全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铜伴侣蛋白CCS介导铜锌-超氧化物歧化酶激活的过程

DOI: 10.3969/j.issn.1006-267x.2011.08.001

Keywords: CCS,,SOD1

Full-Text   Cite this paper   Add to My Lib

Abstract:

CCS是细胞质中铜锌-超氧化物歧化酶(SOD1)的铜伴侣蛋白。本文综述了CCS介导SOD1激活的过程。CCS与SOD1通过蛋白-蛋白相互作用的方式将铜离子插入到不含铜离子的SOD1(apoSOD1)中,并促进二硫键的形成而激活SOD1。影响CCS活性的因素包括:X连锁的细胞凋亡抑制蛋白(XIAP)、神经接头蛋白X11α和铜代谢中含结构域Murr1蛋白(COMMD1)。

References

[1]  BARTNIKAS T B, GITLIN J D. Mechanisms of biosynthesis of mammalian copper/zinc superoxide dismutase[J]. The Journal of Biological Chemistry, 2003, 278(35):33602-33608
[2]  RAE T D, SCHMIDT P J, PUFAHL R A, et al. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase[J]. Science, 1999, 284(805):805-808.
[3]  AMY L C, BARTNIKAS T B, GITLIN J D, et al. Mechanisms of the copper-dependent turnover of the copper chaperone for superoxide dismutase[J]. The Journal of Biological Chemistry, 2006, 281(19):13581-13587.
[4]  KACHUR A V, KOCH C J, BIAGLOW J E. Mechanism of copper-catalyzed autoxidation of cysteine[J]. Free Radical Research, 1999, 31(1):23-34.
[5]  BERTINATO J, LABBE M R. Copper modulates the degradation of copper chaperone for Cu,Zn superoxide dismutase by the 26 S proteosome[J]. The Journal of Biological Chemistry, 2003, 278(37):35071-35078.
[6]  MCLOUGHLIN D M, STANDEN C L, LAU K F, et al. The neuronal adaptor protein X11α interacts with the copper chaperone for SOD1 and regulates SOD1 activity[J]. The Journal of Biological Chemistry, 2001, 276(12):9303-9307.
[7]  WILLIANNE I M, WIJMENGA C, BERGER R, et al. Cu,Zn superoxide dismutase maturation and activity are regulated by COMMD1[J]. The Journal of Biological Chemistry, 2010, 285(37):28991-29000.
[8]  KIM B E, TRACY N, THIELE D J, et al. Mechanisms for copper acquisition, distribution and regulation[J]. Nature Chemical Biology, 2008, 4(3):176-185.
[9]  VALENTINE S J, GRALLA E B. Delivering copper inside yeast and human cells[J]. Science, 1997, 278(5339):817-818.
[10]  KLOMP L W, LIN S J, YUAN D, et al. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis[J]. The Journal of Biological Chemistry, 1997, 272(14):9221-9226.
[11]  GLERUM D M, SHTANKO A, TZAGOLOFF A. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase[J]. The Journal of Biological Chemistry, 1996, 271(24):14504-14509.
[12]  CULOTTA V C, KLOMP L W. The copper chaperone for superoxide dismutase[J]. The Journal of Biological Chemistry, 1997, 272(38):23469-23472.
[13]  CASARENO R L, DARREL W, GITLIN J D, et al. The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase[J]. The Journal of Biological Chemistry, 1998, 273(37):23625-23628.
[14]  SCHMIDT P J, RAE T D, PUFAHL R A, et al. Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase[J]. The Journal of Biological Chemistry, 1999, 274(34):23719-23725.
[15]  SCHMIDT P J, KUNST C, CCLOTTA V C, et al. Copper activation of superoxide dismutase 1 (SOD1) in vivo[J]. The Journal of Biological Chemistry, 2000, 275(43):33771-33776.
[16]  BROWN N M, TORRES A S, DOAN P E, et al. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase[J]. Proceedings of the National Academy of Sciences, 2004, 101(15):5518-5523.
[17]  FURUKAWA Y, TORRES A S, OHALLORAN T V, et al. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS[J]. The EMBO Journal, 2004, 23(14):2872-2881.
[18]  BRADY G F, GALBAN S, LIU X W , et al. Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination[J]. Molecular and Cellular Biology, 2010, 30(8):1923-1936.
[19]  FALCONI M, IOVINO M, DESIDERI A, et al. A model for the incorporation of metal from the copper chaperone CCS into Cu,Zn superoxide dismutase[J]. Structure, 1999, 7(8):903-908.
[20]  LAMB A L, TORRES A S, O''HALLORAN T V, et al. Heterodimeric structure of superoxide dismutase in complex with its metallochaperone[J]. Nature, 2001, 8(9):751-755.
[21]  FURUKAWA Y, THOMASV O. Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis[J]. Antioxidants & Redox Signaling, 2006, 8(5):847-867.
[22]  BANCI L, BERTINI I, BAFFONI S C, et al. Affinity gradients drive copper to cellular destinations[J]. Nature, 2010, 10(465):1-4.
[23]  ENDO T, FUJII T, SATO K, et al. A pivotal role of Zn-binding residues in the function of the copper chaperone for SOD1[J]. Biochemical and Biophysical Research Communications, 2000, 276(3):999-1004.
[24]  HWANGA I K, EUMB W S, YOO K Y, et al. Copper chaperone for Cu,Zn-SOD supplement potentiates the Cu,Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus[J]. Free Radical Biology & Medicine, 2005, 39(3):392-402.
[25]  TORRES A S, PETRI V, RAE T D, et al. Copper stabilizes a heterodimer of the yCCS metallochaperone and its target superoxide dismutase[J]. The Journal of Biological Chemistry, 2001, 276(42):38410-38416.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133