全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纤维素结合域的酿酒酵母表面展示及其黏附位点初探

DOI: 10.3969/j.issn.1006-267x.2011.06.014

Keywords: 纤维素结合域,酵母表面展示系统,黏附位点,产琥珀酸丝状杆菌

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用酿酒酵母表面展示系统表达产琥珀酸丝状杆菌S85纤维素结合域家族2(CBD2),分析其纤维黏附位点。将CBD2基因插入质粒pYD1的AGA23′端,构建pMCBD2重组质粒,化学转化pMCBD2至酿酒酵母EBY100中,2%半乳糖诱导CBD2表达于酿酒酵母表面。利用免疫组化技术检测重组酵母细胞在稻草茎细胞壁上的黏附位点。结果表明:利用酿酒酵母表面展示系统可成功表达产琥珀酸丝状杆菌S85的CBD2基因;重组CBD2的pMCBD2-EBY100与稻草茎孵育后,经抗V5异硫氰酸荧光素标记抗体处理可在稻草茎的薄壁、厚壁和维管组织均检测到荧光。产琥珀酸丝状杆菌S85的CBD2黏附稻草多个组织。结果提示:酿酒酵母表面展示技术与免疫组化技术联用研究瘤胃细菌CBD的黏附位点是可行的。

References

[1]  GONG J, FORSBERG C W. Factors affecting adhesion Fibrobacter succinogenes S85 and adherence defective mutant to cellulose[J]. Applied and Environmental Microbiology, 1989, 55:3039-3044.
[2]  FORSBERG C W, FORANO E, CHESSON A. Microbial adherence to the plant cell wall and enzymatic hydrolysis[C]//CRONJE P D. Ruminant physiology: digestion, metabolism, growth and reproduction. Proceeding of the 9th ISRP. UK: CAB International, 2000, 79-97.
[3]  MIRON J, BEN-GHEDALIA D, MORRISON M. Invited review: adhesion mechanisms of rumen cellulolytic bacteria[J]. Journal of Dairy Science, 2001, 84:1294-1309.
[4]  FUJITA Y, KATAHIRA S, UEDA M, et al. Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in Saccharomyces cerevisiae[J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 17:189-195.
[5]  SHIBASAKI S, MAEDA H, UEDA M. Molecular display technology using yeast-arming technology[J]. Analytical Sciences January, 2009, 25:41-49.
[6]  SAMBROOK J, RUSSELL D W. 分子克隆实验指南[M].3版.黄培堂,王栋樑,周晓巍,等,译.北京:科学出版社,2002.
[7]  ITO H, FUKUDA Y, MURATA K, et al. Transformation of intact yeast cells treated with alkali cations[J]. Journal of Bacteriology, 1983, 153(1):163-168.
[8]  WANG J K, LIU J X, LI J Y, et al. Histological and rumen degradation changes of rice straw stem epidermis as influenced by chemical pretreatment[J]. Animal Feed Science and Technology, 2007, 136:51-62.
[9]  MCCARTNEY L, BLAKE A W, FLINT J E, et al. Differential recognition of plant cell walls bymicrobial xylan-specific carbohydrate-binding modules[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(2):4765-4770.
[10]  WANG J K, CHEN X L, LIU J X, et al. Histological changes of tissues and cell wall of rice straw influenced by chemical pretreatments[J]. Asian-Australasian Journal of Animal Sciences, 2008, 21:824-830.
[11]  王佳堃,叶丹妮,李文婷,等.化学预处理对稻草硅化程度的影响及其与稻草降解率的关系研究[J].动物营养学报,2008,20(2):170-175.
[12]  ARNOLD K, BORDOLI L, KOPP J, et al. The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling[J]. Bioinformatics, 2006, 22:195-201.
[13]  SCHWEDE T, KOPP J, GUEX N, PEITSCH M C. SWISS-MODEL: an automated protein homology-modeling server[J]. Nucleic Acids Research, 2003, 31:3381-3385.
[14]  GUEX N, PEITSCH M C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling[J]. Electrophoresis, 1997, 18:2714-2723.
[15]  SIMPSON P J, XIE H, BOLAM D N, et al. The structural basis for the ligand specificity of family 2 carbohydrate-binding modules[J]. The Journal of Biological Chemistry, 2000, 275:41137-41142.
[16]  BLAKE A W, MCCARTNEY L, FLINT J E, et al. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes[J]. The Journal of Biological Chemistry, 2006, 281:29321-29329.
[17]  FUKUDA T, ISHIKAWA T, OGAWA M, et al. Enhancement of cellulase activity by clones selected from the combinatorial library of the cellulose-binding domain by cell surface engineering[J]. Biotechnology Progress, 2006, 22:933-938.
[18]  MURAI T, UEDA M, KAWAGUCHI T, et al. Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and xarboxymethylcellulase from Aspergillus aculeatus[J]. Applied and Environmental Microbiology, 1998, 64:4857-4861.
[19]  NAM J M, FUJITA Y, ARAI T, et al. Construction of engineered yeast with the ability of binding to cellulose[J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 17:197-202.
[20]  BORASTON A B, BOLAM D N, GILBERT H J, et al. Carbohydrate-binding modules: fine-tuning polysaccharide recognition[J]. Biochemical Journal, 2004, 382:769-781.
[21]  FORSBERG C W, CHENG K J, WHITE B A. Polysaccharide degradation in the rumen and large intestine[M]//MACKIE R I, BRUCE A. WHITE R E, et al. Isaacson gastrointestinal microbiology. New York: Chapman and Hall, 1997, 319-379.
[22]  LATHAM M J, BROOKER B E, PETIPHER G L, et al. Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and cell walls in leaves of perennial ryegrass[J]. Applied and Environmental Microbiology, 1978, 35:156-165.
[23]  DINSDALE D, MORRIS E J, BACON J S D. Electron microscopy of the microbial populations present and their modes of attack on various cellulosic substrates undergoing digestion in the sheep rumen[J]. Applied and Environmental Microbiology, 1978, 36:160-168.
[24]  KONDO A, UEDA M. Yeast cell-surface display-applications of molecular display[J]. Applied Microbiology and Biotechnology, 2004, 64:28-40.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133