全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

晶体苏氨酸和微囊苏氨酸对幼建鲤生长性能和消化吸收能力影响的比较研究

DOI: 10.3969/j.issn.1006-267x.2011.05.010

Keywords: 微囊苏氨酸,晶体苏氨酸,幼建鲤,消化吸收能力

Full-Text   Cite this paper   Add to My Lib

Abstract:

本试验旨在通过60d的饲养试验比较饲料中添加晶体苏氨酸和微囊苏氨酸对幼建鲤(Cyprinuscarpiovar.Jian)生长性能和消化吸收能力的影响。选取平均初重为(13.61±0.02)g的健康幼建鲤300尾,随机分成2组,每组3个重复,每个重复50尾,分别饲喂在基础饲料中添加晶体苏氨酸和微囊苏氨酸的试验饲料,试验饲料中苏氨酸的有效含量均为125%。结果表明:微囊苏氨酸组幼建鲤的特定生长率(SGR)、摄食量(FI)、蛋白质沉积率(PPV)和脂肪沉积率(LPV)均显著高于晶体苏氨酸组(P<0.05);同时,微囊苏氨酸组幼建鲤的肝胰脏和肠重及蛋白质含量、肠长、肝体指数(HIS)和肠体指数(ISI)亦显著高于晶体苏氨酸组(P<0.05)。微囊苏氨酸组幼建鲤的各肠段皱襞高度和碱性磷酸酶(AKP)活性以及中肠、后肠Na+,K+-ATP酶和γ-谷氨酰转肽酶(γ-GT)活力均显著高于晶体苏氨酸组(P<0.05)。微囊苏氨酸组肝胰脏和肠道胰蛋白酶以及肠道脂肪酶的活力均显著高于晶体苏氨酸组(P<0.05)。微囊苏氨酸组肝胰脏和肌肉中谷草转氨酶(GOT)和谷丙转氨酶(GPT)活力以及血浆氨浓度显著低于晶体苏氨酸组(P<0.05),而血清中GOT活力则显著高于晶体苏氨酸组(P<0.05)。体外溶解速率试验结果表明:晶体形式的L-苏氨酸在15min内完全释放,而包被处理的微囊苏氨酸释放速率较慢,在120min后才完全释放。由此得出,幼建鲤对微囊苏氨酸的利用效果优于晶体苏氨酸;与晶体苏氨酸相比,微囊苏氨酸能有效提高幼建鲤对营养的消化吸收能力。

References

[1]  BODIN N, MAMBRINI M, WAUTERS J B, et al. Threonine requirements for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) at the fry stage are similar[J]. Aquaculture, 2008, 274:353-365.
[2]  WILSON R P. Amino acids and proteins[M]//HALVER J E. Fish nutrition. 2nd ed. New York: Academic Press Inc., 1989:112-153.
[3]  GATLIN D M, BARROWS F T, BROWN P, et al. Expanding the utilization of sustainable plant products in aquafeeds: a review[J]. Aquaculture Research, 2007, 38:551-579.
[4]  COHEN R S, TANKSLEY T D. Limiting amino acids in sorghum for growing and finishing swine[J]. Journal of Animal Science, 1976, 43:1028-1034.
[5]  FULLER M F, MENNIE I, CROFTS R M J. The optimal amino acid supplementation of barley for the growing pig 2. Optimal additions of lysine and threonine for growth[J]. British Journal of Nutrition, 1979, 41:333-340.
[6]  GROSBACH D A, LEWIS A J, PEO E R. An evaluation of threonine and isoleucine as the third and fourth limiting amino acids in corn for growing pigs[J]. Journal of Animal Science, 1985, 60:487-494.
[7]  LEWIS A J, BAYLEY H S. Amino acid bioavailability[M]//AMMERMAN C A, BAKER D, LEWIS A J. Bioavailability of nutrients for animals: amino acids, minerals and vitamins. San Diego, CA: Academic Press Inc., 1995:35-65.
[8]  COWEY C B. Amino acid requirements of fish: a critical appraisal of present values[J]. Aquaculture, 1994, 124:1-11.
[9]  ZHOU X Q, ZHAO C R, LIN Y. Compare the effect of diet supplementation with uncoated or coated lysine on juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Aquaculture Nutrition, 2007, 13:457-461.
[10]  TESHIMA S, KANAZAWA A, YAMASHITA M. Dietary value of several proteins and supplemental amino acids for larvae of the prawn, Penaeus japonicus[J]. Aquaculture, 1986, 51:225-235.
[11]  WEN Z P, ZHOU X Q, FENG L, et al. Effect of dietary pantothenic acid supplement on growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Aquaculture Nutrition, 2009, 15:470-476.
[12]  JIANG W D, ZHOU X Q, FENG L, et al. Growth, digestive capacity and intestinal microflora of juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of dietary inositol[J]. Aquaculture Research, 2009, 40:955-962.
[13]  LI W, ZHOU X Q, FENG L, et al. Effect of dietary riboflavin on growth, feed utilization, body composition and intestinal enzyme activity of juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Aquaculture Nutrition, 2010, 16:137-143.
[14]  TIBALDI E, LANARI D. Optimal dietary lysine levels for growth and protein utilisation of fingerling sea bass (Dicentrarchus labrax L.) fed semipurified diets[J]. Aquaculture, 1991, 95:297-304.
[15]  LIN Y, ZHOU X Q. Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Aquaculture, 2006, 256:389-394.
[16]  HUMMEL B C W. A modified spectrophotometric determinations of chymotrypsin, trypsin, and thrombin[J]. Canadian Journal of Physiology and Pharmacology, 1959, 37:1393-1399.
[17]  ZARATE D D, LOVELL R T, PAYNE M. Effects of feeding frequency and rate of stomach evacuation on utilization of dietary free and protein-bound lysine for growth by channel catfish Ictalurus punctatus[J]. Aquaculture Nutrition, 1999, 5:17-22.
[18]  MURAI T, AKIYAMA T, OGATA H. Effect of coating amino acids with casein supplemented to gelatin diet on plasma free amino acids of carp[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1982, 48:703-710.
[19]  ALAM M S, TESHIMA S, KOSHIO S, et al. Effects of supplementation of coated crystalline amino acids on growth performance and body composition of juvenile kuruma shrimp Marsupenaeus japonicus[J]. Aquaculture Nutrition, 2004, 10:309-316.
[20]  LOVELL T. Nutrition of aquaculture species[J]. Journal of Animal Science, 1991, 69:4193-4200.
[21]  SEGOVIA-QUINTERO M A, REIGH R C. Coating crystalline methionine with tripalmitin-polyvinyl alcohol slows its absorption in the intestine of Nile tilapia, Oreochromis niloticus[J]. Aquaculture, 2004, 238:355-367.
[22]  WILSON R P, ALLEN O W J R, ROBINSON E H, et al. Tryptophan and threonine requirements of fingerling channel catfish[J]. Journal of Nutrition, 1978, 108:1595-1599.
[23]  HE W, ZHOU X Q, FENG L, et al. Dietary pyridoxine requirement of juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Aquaculture Nutrition, 2009, 15:402-408.
[24]  FURNE M, HIDALGO M C, LOPEZ A, et al. Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study[J]. Aquaculture, 2005, 250:391-398.
[25]  BESSEY O A, LOWRY O H, BROCK M J. Rapid coloric method for determination of alkaline phosphatase in five cubic millimeters of serum[J]. Journal of Biological Chemistry, 1946, 164:321-329.
[26]  ROSALKI S B, RAU D, LEHMANN D, et al. Determination of serum gamma-glutamyl transpeptidase activity and its clinical applications[J]. Annals of Clinical Biochemistry, 1970, 7:143-147.
[27]  MCCORMIC S D. Methods for nonlethal gill biopsy and measurements of Na+,K+-ATPase[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50:656-658.
[28]  BRADFORD M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding[J]. Analytical Biochemistry, 1976, 72:248-254.
[29]  TANTIKITTI C, CHIMSUNG N. Dietary lysine requirement of freshwater catfish (Mystus nemurus Cuv. & Val)[J]. Aquaculture Research, 2001, 32:135-141.
[30]  LOPEZ-ALVARADO J, LANGDON C J, TESHIMA S I, et al. Effects of coating and encapsulation of crystalline amino acids on leaching in larval feeds[J]. Aquaculture, 1994, 122:335-346.
[31]  BERGE G E, SVEIER H, LIED E. Nutrition of Atlantic salmon (Salmo salar): the requirement and metabolic effect of lysine[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 1998, 120:477-485.
[32]  KLEIN S, COHN S M, ALPERS D H. The alimentary tract in nutrition[M]//SHILS M E. Modern nutrition in health and disease. Baltimore, MD: Williams and Wilkins, 1998:605-630.
[33]  VILLANUEVA J, VANACORE R, GOICOECHEA O, et al. Intestinal alkaline phosphatase of the fish Cyprinus carpio: regional distribution and membrane association[J]. Journal of Experimental Zoology, 1997, 279:347-355.
[34]  TRIPATHI P K, SINGH A. Carbaryl induced alterations in the reproduction and metabolism of freshwater snail Lymnaea acuminate[J]. Pesticide Biochemistry and Physiology, 2004, 79:1-9.
[35]  FARHANGI M, CARTER C G, HARDY R W. Growth, physiological and immunological responses of rainbow trout (Oncorhynchus mykiss) to different dietary inclusion levels of dehulled lupin (Lupinus angustifolius)[J]. Aquaculture Research, 2001, 32:329-340.
[36]  SCHUHMACHER A, WAX C, GROPP J M. Plasma amino acids in rainbow trout (Oncorhynchus mykiss) fed intact protein or a crystalline amino acid diet[J]. Aquaculture, 1997, 151:15-28.
[37]  MILLAMENA O M, BAUTISTA-TERUEL M N, KANAZAWA A. Methionine requirement of juvenile tiger shrimp Penaeus monodon Fabricius[J]. Aquaculture, 1996, 143:403-410.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133