全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质通报  2004 

藏南定日地区主中央冲断层与藏南拆离系的特征及其活动时代

, PP. 636-644

Keywords: 藏南定日地区,主中央冲断层,藏南拆离系,断层活动年龄,喜马拉雅造山带

Full-Text   Cite this paper   Add to My Lib

Abstract:

低喜马拉雅结晶杂岩构成了北北东向阿伦背斜的核部,该背斜东、西两翼由高喜马拉雅结晶杂岩组成,这两者之间的界线为主中央冲断层(MCT1)。MCT1原为向南逆冲的韧性断层,后遭受北北东向褶皱作用而转变为正断层。高喜马拉雅结晶杂岩顶部被藏南拆离系下部的韧性正断层所截,与其上覆的北坳组分开,北坳组顶部又被一脆性正断层将其与上覆的藏南特提斯沉积岩分开。这条韧性正断层称为STD1,其上部的脆性正断层称为STD2。独居石U-Th-Pb测年结果和构造分析表明,藏南定日地区的高喜马拉雅结晶杂岩就是借助这2条韧性断层MCT1与STD1在大约13Ma时从藏南中下地壳折返至地壳浅部的,然后再遭受近南北向的褶皱作用。

References

[1]  Gansser A. The geodynamic history of the Himalaya[A]. In: Gupta H K, Delany F M eds. Zagros, Hindu Kush, Himalaya geodynamic evolution [M]. American Geophysical Union Geodynamics Series, 1981,3:111~121.
[2]  Schelling D, Arita K. Thrust tectonics, crustal shortening and the structure of the far-eastern Nepal Himalaya[J].Tectonics, 1991,10: 851~862.
[3]  赵文津,赵逊,史大年,等.喜马拉雅和青藏高原深剖面(INDEPTH)研究进展[J].地质通报,2002,21(11):691~700.
[4]  Burchfiel B C, Chen Z, Hodges K V, et al. The south Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt[J]. Geological Society of America Special Paper, 1992,269:1~41.
[5]  Gansser A. Geology of the Himalayas[M]. London: Wiley Inter science, 1964.1~289.
[6]  Gansser A. Geology of the Bhutan Himalaya [M]. Basel:Birkharuser Verlag, 1983.1~181.
[7]  刘焰,钟大赉.东喜马拉雅地区高压麻粒岩岩石学研究及构造意义[J].地质科学,1998,33:267~281.
[8]  Hodges K, Ruhl K, Whipple K, et al. Evidence for neotecton ic activity on the main central thrust system, central Nepal, and coordination of erosion and deformation in the Himalayan orogen system[A]. In: Abstract volume of the 18th Himalaya-Karako ram-Tibet workshop[C]. 2-4 April 2003 Ascona, Switzerland,60.
[9]  中国珠穆朗玛峰登山队科学考察队.珠穆朗玛峰地区科学考察报告[M].北京:科学出版社,1962.1~291.
[10]  Searle M P, Simpson R D L, Parrish R R, et al. The struc tural geometry, metamorphic and magmatic evolution of the Everest massif, high Himalaya of Nepal-south Tibet[J]. Journal of the Geological Society, 2003, 160: 345~366.
[11]  Ahmad T N, Harris M, Bickle H, et al. Isotopic constraints on the structural relationships between the Lesser Himalayan se ries and the high Himalayan crystalline series, Garhwal Himalaya [J]. Geological Society of American Bulletin, 2000, 112: 467~ 477.
[12]  DeCelles P G, Robinson D M, Quade J, et al. Tectonic im plications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal[J]. Science, 2000, 288: 497~499.
[13]  Robinson D M, DeCelles G, Patchett P J, et al. The kinematic history of the Nepalese Himalaya interpreted from Nd isotopes[J]. Earth Planetary Science Letters, 2001, 192: 507~521.
[14]  Poller U, Liebetrau V, Todt W. U-Pb single-zircon dating under cathodoluminescence control (CLC-method): Application to polymetamorphic orthogneisses[J]. Chemical Geology, 1997, 139: 287~297.
[15]  Ludwig K R. Pbdat for MS-DOS-a computer program for IBM-PC compatibles for processesing raw Pb-U-Th isotope data [R]. Open-file report 88-542, US Geological Survey, 1988. 1~37.
[16]  Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two stage model[J]. Earth Planetary Science Letters, 1975, 26:207~221.
[17]  Schaerer U. The effect of initial 230Th disequilibrium on young U-Pb ages: The Makalu case, Himalaya[J]. Earth Planetary Sci ence Letters, 1984, 167: 191~204.
[18]  Parrish R R. U-Pb dating of monazite and its application to geological problems[J]. Candian Journal of Earth Sciences, 1990, 27: 1431~1450.
[19]  Nelson K D, Zhao W J, Brown L D, et al. Partially molten middle crust beneath southern Tibet: Synthesis of project IN DEPTH results[J]. Science, 1996, 274(5293): 1684~1688.
[20]  Grujic D, Casey M, Davidson C, et al. Ductile extrusion of the higher Himalayan crystalline in Bhutan: Evidence from quartz microfabrics[J]. Tectonophysics, 1996, 260: 21~43.
[21]  Grujic D, Hollister L, Parrish R R. Himalayan metamorphic sequence as an orogenic channel: Insight from Bhutan[J]. Earth Planetary Science Letters, 2002, 198: 177~191.
[22]  Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation [J]. Nature, 2001, 414: 738~742.
[23]  中国科学院西藏科学考察队.珠穆朗玛峰地区科学考察报告(地质)[M].北京:科学出版社,1974.1~299.
[24]  中国科学院青藏高原综合科学考察队-中国登山队珠穆朗玛峰科学考察分队.珠穆朗玛峰科学考察报告(地质)[M].北京:科学出版社.1979.1~221.
[25]  Burg J P, Brunel M, Gapais D, et al. Deformation of leucogranites of the crystalline main central sheet in southern Tibet(China)[J]. Journal of Structural Geology,1984,6:535~542.
[26]  尹集祥,郭师曾珠穆朗玛峰及其北坡的地层,并讨论震旦-寒武系及石炭、二叠系与相邻地区的比较[A].见:中国科学院青藏高原综合科学考察队-中国登山队珠穆朗玛峰科学考察分队珠穆朗玛峰科学考察报告(地质)[M].北京:科学出版社,1979.1~70.
[27]  Carosi R, Lombardo B, Molli G, et al. The south Tibetan detachment system in the Rongbuk valley, Everest region: De formation features and geological implications[J]. Journal of Asian Earth Sciences, 1998, 16: 299~311.
[28]  Harrison T M, McKeegan K D, LeFort P. Detection of in herited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe daiting: Crystallization age and tectonic implications [J]. Earth and Planetary Science Letters, 1995, 133: 271~282.
[29]  Hodges K V, Parrish R R, Searle M P. Tectonic evolution of the central Annapurna range, Nepalese Himalayas[J]. Tectonics, 1996, 15: 1264~1291.
[30]  Edwards M A, Harrison T M. When did the roof collapse? Late Miocene north-south extension in the high Himalaya re vealed by Th-Pb monazite dating of the Khula Kangri granite [J]. Geology, 1997, 25: 543~546.
[31]  Daniel C G, Hollister L S, Parrish R R, et al. Exhumation of the main central thrust from lower crustal depths, eastern Bhutan Himalaya [J]. Journal of Metamorphic Geology, 2003,21: 317~334.
[32]  Catlos E J, Harrison T M, Manning C E, et al. Records of the evolution of the Himalayan orogen from in situ Th-Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal[J]. Journal of Asian Earth Sciences, 2002, 20: 459~ 479
[33]  卫管一,石绍清,茅燕石,等.喜马拉雅地区前寒武系地质构造与变质作用[M].成都:成都科技大学出版社,1989.1~176.
[34]  Lombardo B, Rolfo F. Two contrasting eclogite types in the Himalayas: Implications for the Himalayan orogeny[J]. Journal of Geodynamics, 2000, 30: 37~60.
[35]  Wager L R. A review of the geology and some new observa tions[A]. In: Ruttledage H ed. Everest 1933[M]. London: Hodder & Stoughton, 1934. 312~336.
[36]  Wager L R. Injected granite sheets of the Rongbuk valley and the north face of Mount Everest[A]. In: Wadia D N ed. Commemorative volume[M]. India mining, Geology and Metallurgy Institute, 1965. 358~379.
[37]  Pognante U, Benna P. Metamorphic zonation, migmatization, and leucogranites along the Everest transect (Eastern Nepal and Tibet): Record of an exhumation history[A]. In: Treloar P J, Searle M P eds. Himalayan Tectonics[M]. Geological Society of London, Special Publication 74, 1993. 323~340.
[38]  Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Himalayan leucogranites[J]. Tectonophysics, 1987,134:39~57.
[39]  Inger S, Harris N. Geochemical constraints on leucogranite mag matism in the Langthan valley, Nepal Himalaya [J]. Journal of Petrology, 1993, 34: 345~368.
[40]  Searle M P, Parrish R l, Hodges K V, et al. Shisha Pangma leucogranite, south Tibetan Himalaya: field relations, geochemistry, age, origin, and emplacement[J]. Journal of Geology, 1997, 105: 295~307.
[41]  Visona D, Lombardo B. Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet): Himalayan leucogranite geneis by isobaric heating? [J]. Lithos, 2002, 62: 125~150.
[42]  Parrish R R, Hodges K V. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya[J]. Geological Society of American Bulletin, 1996, 108: 904~911.
[43]  Whittington A, Foster G, Harris N, et al. Lithostratigraphic correlations in the western Himalaya: An isotopic approach [J].Geology, 1999, 27: 585~588.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133