全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质通报  2008 

构造地貌-认识高原历史的钥匙

Keywords: 构造地貌,青藏高原,克里雅河,Ar-Ar年龄,西域砾岩,早更新世,1.1Ma

Full-Text   Cite this paper   Add to My Lib

Abstract:

简要评述了构造地貌的研究,并以青藏高原西北缘克里雅河流域地貌演化说明了构造变形与青藏高原的形成历史。以西域砾岩顶部的玄武岩作为区域构造地貌的标志,获得的高质量Ar-Ar年龄的加权平均值为1.09Ma±0.13Ma。该年龄不仅代表了西域砾岩沉积结束的时间,并制约了区域风沙堆积时代的下限,是一个重要的气候环境变化的转折点。更重要的是,该年龄标志了克里雅河演化的开始,即目前可观察的克里雅河的历史不过1.1Ma。另外获得的系统、丰富、翔实的沉积学、构造地质学、低温热年代数据和克里雅河流域地貌的测量结果还揭示了上新世晚期以来区域强烈的变形与构造地貌的演化。获得的重要结论还包括:能够分析恢复的前克里雅河的历史不超过西域砾岩沉积期,能够推测的青藏高原西北缘河流体系演化的最老历史不超过上新世阿图什组沉积期。在中新世乌恰组沉积时,基本观察不到青藏高原现今地貌体系产生的沉积作用的记录,而是更老的前青藏高原构造地貌格架对沉积体系产生的影响。青藏高原的主体可能在中更新世早期前后才抬升进入冰冻圈。现今的克里雅河地貌主要是在区域构造抬升中由冰川融水侵蚀形成的。克里雅河源头可能残留了青藏高原演化的关键记录。

References

[1]  Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255(5052):1663-1670.
[2]  Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibetan Plateau[J].Science,2001, 294(5547):1671-1677.
[3]  徐仁 陶君容 孙湘君 等.希夏邦马峰高山栎化石层的发现及其植物学和地质学上的意义[J].植物学报,1973,15(1):103-119.
[4]  Li T D. The process and mechanism of the rise of the Qinghai-Tibet Plateau[J].Tectonophysics,1996, 260:45-53.
[5]  李吉均 文世宣 张青松.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学,1979,(6):608―616.
[6]  .四川汶川县MS8.0地震参数[R].中国地震信息网http:∥www.esi.ae.cn/sichuan/sichuan080512-cs1.htm,2008.
[7]  USGS.Magnitude7.9-EasternSichuan,China[K].2008.http://neic.usgs.gov/neis/eq_depot/2008/eq_080512_ryan.
[8]  Lin A M, Fu B H, Guo J M, et al. Co-Seismic strike-slip and rupture length produced by the 2001 Ms 8.1central Kunlun Earthqake[J]. Science, 2002, 296(5575):2015-2017.
[9]  Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32 (9):809-812.
[10]  Liu Y P, King R, Tang W Q, et al. Coseismic displacement after Magnitude 8.0 Earthquake by GPS monitoring in Longmenshan and adjacent region[C]//Xiao W J, Zhai M G, Li X H, et al. Abstract Volume of Gondwana 13. Yunnan, China, Sept.15-17, 2008: 137.
[11]  Burbank D, Anderson R. Tectonic geomorphology[M]. London: Blackwell Science Ltd., 2001:13-32.
[12]  Cowgill E. Impact of riser reconstructions on estimation of secular variation in rates of strike - slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China[J]. Earth and Planetary Science Letters, 2007, 254(3/4):239-255.
[13]  Washburn Z, Arrowsmith J R, Forman S L, et al. Late Holocene earthquake history of the central Altyn Tagh Fault, China[J]. Geology, 2001, 29 (11):1051-1054.
[14]  Washburn Z, Arrowsmith J R, Dupont-Nivet G, et al. Paleoseismology of the Xorxol segment of the Central Altyn Tagh Fault, Xinjiang, China[J]. Annals of Geophysics, 2003, 46(5):1015-1034.
[15]  Bendick R, Bilham R., Freymueller J, et al. Geodetic evidence for a low slip rate in the Altyn Tagh fault system[J]. Nature, 2000, 404: 69-72.
[16]  Wallace K, Yin G, Roger B. Inescapable slow slip on the Altyn Tagh fault[J]. Geophysical Research Letters, 2004, 31(9) :L09613.1- L09614.3.
[17]  Shen Z K, Wang M, Li Y X, et al. Crustal deformation along the Altyn Tagh fault system, western China, from GPS [J]. Journal of Geophysical Research, 2001, 106 (B12):30607-30621.
[18]  Meriaux A S, Ryerson, F J, Tapponnier P, et al. Rapid slip along the central Altyn Tagh Fault: morphochronologic evidence from Cherchen He and Sulamu Tagh[J]. Journal of Geophysical Research, 2004. 109:B06401.
[19]  Zhang P Z, Molnar P, Xu X W. Late Quaternary and present-day rate of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau[J]. Tectonics, 2007, 26:TC5010.
[20]  王永 王军 迟振卿 肖序常 张招崇.克里雅河阶地的形成与西昆仑山隆升[J].宁夏工程技术,2004,3(3):207-209.
[21]  刘嘉麒 买买提.西昆仑山第四纪火山的分布与K―Ar年龄[J].中国科学:B辑,:.
[22]  Otofuji Y, Itaya T, Wang H C, et al. Palaeomagnetism and K-Ar dating of Pleistocene volcanic rocks along the Altyn Tagh fault, northern border of Tibet[J]. Geophysical Journal International,1995, 120(2):367-374.
[23]  Wang Y, Li Q, Qu G S. ^40Ar/^39Ar thermochronological constraints on the cooling and exhumation history of the South Tibetan De tachment System, Nyalam area, southern Tibet[C]//Law R D, Searle M P, Godin L. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. London: Geological Society, 2006, 268:327-354.
[24]  杨逸畴.克里雅河地貌的形成与演化[J].干旱区地理,:.
[25]  曲国胜 陈新安.西昆仑―帕米尔造山带及其北缘前陆盆地板内变形构造[J].地质论评,:.
[26]  Zheng H B, Powell C M, An Z S, et al. Pliocene uplift of the northern Tibetan Plateau[J]. Geology, 2000, 28(8): 715-718.
[27]  方小敏 蒋平安 等.昆仑山黄土与中国西部沙漠发育和和高原隆升[J].中国科学:D辑,:.
[28]  万景林 王二七.西昆仑北部山前普鲁地区山体抬升的的裂变径迹研究[J].核技术,2002,25(7):565-567.
[29]  Wang E, Wan J L, Liu J Q. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area: Constraints on timing of uplift of northern margin of the Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108(B8):2401.
[30]  常宏 张培震 安芷生 王旭龙 强小科 符超峰.昆仑山北坡鸭子泉河阶地发育及其构造-气候意义[J].科学通报,2005,50(9):912~917.
[31]  付碧宏 张松林 谢小平等.阿尔金断裂系西段-康西瓦断裂的晚第四纪构造地貌特征研究[J].第四纪研究,2006,26(2):228-235.
[32]  赵振明 李荣社 孟勇 等.西昆仑提孜那甫河与喀拉喀什河山前河谷地貌对比及构造-气候意义[J].新疆地质,2006,24(2):115-119.
[33]  黎敦朋 赵越 胡健民 等.青藏高原西北缘高原面与陡坡地貌形成过程的裂变径迹热年代学约束[J].岩石学报,2007,23(5):900-910.
[34]  尹安 党玉琪 陈宣华等.柴达木盆地新生代演化及其构造重建-基于地震剖面的解释[J].地质力学学报,2007,13(3):193-211.
[35]  Fang X M, Zhang W L, Meng Q Q, et al. High-resolution Magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1/2):293-306.
[36]  Sun J M, Zhang L Y, Deng C L, et al. Evidence for enhanced aridity in the Tarim Basin of China since 5.3Ma[J]. Quaternary Science Reviews, 2008, 27(9/10):1012-1023.
[37]  黎敦朋.[D].北京:中国地质科学院,2008:130-195.
[38]  刘健 赵越 黎敦朋 等.青藏高原西北缘水系地貌演变的沉积记录[J].,2009:.
[39]  张鸿义 门国发.塔克拉玛干沙漠腹地第四纪地层划分与环境变迁[J].新疆地质,2002,20(3):256-261.
[40]  潘燕兵 黎敦朋 郭芳芳 等.克里雅河河谷地貌与塔里木盆地早-中更新世大湖环境[J].地质通报,2008,27(6):814-822.
[41]  赵越 钱方.青藏高原早-中更新世冰川记录与高原进入冰冻圈的讨论[J].中国地质,2009:.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133