全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质通报  2008 

活动断裂的变形特征及其大地震复发周期的估算

Keywords: 活动断裂,变形特征,滑移速率,特征地震,地震复发周期

Full-Text   Cite this paper   Add to My Lib

Abstract:

活动断裂是晚更新世10~12万年以来一直在活动,现在正在活动,未来一定时期内仍会发生活动的各类断裂。活动断裂控制着大地震的发生,是不同类型地震的发震构造。从活动断裂的变形特征来看,不同性质的活动断裂具有不同的发震构造模型,研究这些问题对认识强震的发震条件,划分潜在的震源区或地震危险区,评估发震构造和发震地点具有重要的意义。基于国内外对不同类型活动断裂的认识,结合近10年来在青藏高原地区对活动断裂的研究,总结了活动断裂的基本变形特征和对大地震复发周期估算的认识。研究表明,东昆仑断裂库塞湖段类似2001年Ms8.1级大地震的强震复发周期为250~350年,阿尔金断裂康西瓦段类似Ms7.4大地震的强震复发周期为370~500年,而在青藏高原东缘的龙门山地区,类似2008年5月12日Ms8.0汶川大地震的强震复发周期为3000~6000年。这些结果可能暗示着走滑断裂大地震的复发周期远短于逆冲断裂大地震的长复发周期,这是值得高度重视和深入研究的新课题。

References

[1]  Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement [J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1002.
[2]  李勇 周荣军 AlexanderL 等.青藏高原东缘大陆动力学过程与地质响应[M].北京:地质出版社,2006.
[3]  Densemore A L, Ellis M A, Li Y, et al. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J]. Tectonics, 2007,26, TC4005, doi: 10.1029/2006TC001987.
[4]  Burchfiel B C, Royden L H, van der Hilst R D, et al. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People\\'s Republic of China [J]. GSA Today, 20008, 18(7):doi: 10.1130/GSATG18A.1.
[5]  张培震 徐锡伟 闻学泽 等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,51(4):1066-1073.
[6]  李海兵 王宗秀 付小方 等.2008年5月12日汶川地震(Ms8,0)地表破裂带分布特征[J].中国地质,2008,35(5):803-813.
[7]  Fritts H C.Tree Ring and Climate[M]. New York:Academic Press, 1976: 567.
[8]  Jacoby G C, Jr Sheppard P R, Sieh K E. Irregular recurrence of large earthquakes along the San Andreas fault: Evidence from trees [J]. Science,1988, 241:196-199.
[9]  Yamaguchi D K, Hoblitt R P. Tree-ring dating of pre 1980 volcanic flowage deposits at Mount St.Holens,Washington[J].Geological Society of America Bulletin, 1995,107 (9):1077-1093.
[10]  Van der Woerd J, Tapponnier P, Ryerson F J, et al. Uniform postglacial slip-rate along the central 600kin of the Kunlun fault (Tibet), from 26Al, 10Be and ^14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal International, 2002, 148: 356-388.
[11]  徐锡伟 TapponnierP VanDerWoerdJ 等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J].中国科学,2003,(10):967-974.
[12]  Cowgirl E. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China[J].Earth and Planetary Science Letters, 2007, 254(3/4): 239-255.
[13]  Zhang Peizhen, Molnar P, Xu Xiwei. Late Quaternary and presentday rates of slip along the Altyn Tagh Fault, northem margin of the Tibetan Plateau[J]. Tectonics, 2007, 26(5):TC5010, doi:10.1029 / 2006 TC002014.
[14]  Reid H F. The mechanism of the earthquake[C]//The California Earthquake of April 18,1906,Report of the State Earthquake Inves tigation Commission, 2. Washington DC: Carnegic Institution, 1910:1-192.
[15]  Heki K, Miyazaki S, Tsuji H. Silent fault slip following an interplate earthquake at the Japan Trench[J]. Nature, 1997, 386:595-598.
[16]  Beroza G C, Jordan T H. Searching for slow and silent earthquakes using free oscillations[J]. J. Geophys. Res., 1990, 95(B3): 2485-2510.
[17]  Kanamori H, Kikuchj M. The 1992 Nicaragua earthquake:A slow tsunami earthquake associated with subducted sediments[J]. Nature, 1993,361:714-716.
[18]  陈运泰 许力生 张勇 等.2008年5月12日汶川特大地震震源特性分析报告[R].,2008.
[19]  JiC.2008.http://www.geoi.ucsb.edu/faculty/ji/big_earthquakes/2008/05/12/Sichuan.html.
[20]  Schwartz D P, Coppersmith K J. Fault behavior and characteristic earthquakes:12. Examples from the Wasatch and San Andreas fault zones [J]. J. Geophys. Res., 1984,90:5681-5698.
[21]  Li Haibing, Xu Zhiqin, Chen Wen. Deformafional features and tectonic evolution of the South Kunlun strike-slip shear zone, Wast Kunlun Mountains[J]. Acta Geoscientia Sinica, Special Issue,1996a: 16-21.
[22]  Li Haibing, Xu Zhiqin, Chen Wen. The southern margin strikeslip fault zone of the East Kunlun Mountains: An important consequence from intracontinental deformation[J]. Continental Dynamics, 1996b.1: 146-155.
[23]  许志琴 李海兵 等.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J].地质学报,:.
[24]  青海省地震局 中国地震局地壳应力研究所.东昆仑活动断裂带[M].北京:地震出版社,1999.1-186.
[25]  Van der Woerd J, Ryerson F J, Tapponnier P, et al. Uniform sliprate along the Kuulun fault: Implications for seismic behavionr and large-scale tectonics[J].Geophys. Res. Lett., 2000, 27:2353-2356.
[26]  Tapponier P, Xu Zhiqin, Roger F, et al. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 2001,294: 671-678.
[27]  Fu Bihong, Yasuo Awata, Jianguo Du, et al. Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake, northern Tibet, China [J]. Tectonophysics, 2005, 407:43-63.
[28]  陈杰 陈宇坤 丁国瑜 等.2001年昆仑山口西8.1级地震地表破裂带[J].第四纪地质,2003,23(6):629-639.
[29]  Li Haibing, Van der Woerd J, Tapponnier P, et al. Slip rate on the Kuulun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw-7.9 Koloxili earthquake [J].Earth and Planetary Science Letters, 2005,237(1/2):285-299.
[30]  李海兵 J.G.Liou.阿尔金断裂带印支期走滑活动的地质及年代学证据[J].科学通报,:.
[31]  Wittlinger G, Tapponnier P, Poupinet G, et al. Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault [J]. Science, 1998, 282: 74-76.
[32]  Wittlinger G, Vergne J, Tapponnier P, et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath Western Tibet[J]. Earth and Planetary Science Letters, 2004, 221 (1/4): 117-130.
[33]  Wang Yu, Zhang Xuemin, Wang Erchie, et al. ^40Ar/^39Ar thermochronological evidence for formation and Mesozoic evolution of the northern-central segment of the Altyn Tagh fault system in the northern Tibetan Plateau[J]. Geological Society of America Bulletin, 2005, 117:1336-1346.
[34]  Li Haibing, Yang Jingsui, Zeng Lingsen, et al. Evidence for Cretaceous uplift of the northern Tibetan Plateau[J]. EOS, 2004, 85(47): Fall Meet. Suppl., Abstract.
[35]  Yang Jingsui, Meng Fancong, Zhang Jianxin, et al. The shoshonitic volcanic rocks at Hongliuxia: Pulses of the Altyn Tagh fault in Cretaceous?[J]. Science in China(Series D), 2001, 31(Suppl.1):94-102.
[36]  国家地震局《阿尔金活动断裂带》课题组.阿尔金活动断裂带[M].北京:地震出版社,1992.
[37]  付碧宏 张松林 谢小平等.阿尔金断裂系西段-康西瓦断裂的晚第四纪构造地貌特征研究[J].第四纪研究,2006,26(2):228-235.
[38]  新疆维吾尔自治区地震局.新疆维吾尔自治区地震构造图说明书(1:200万)[M].成都:成都地图出版社,1997.
[39]  冯先岳.新疆古地震[M].乌鲁木齐:新疆科技卫生出版社,1997.
[40]  邓起东.中国活动构造研究[J].地质论评,:.
[41]  邓起东.中国活动构造研究的进展与展望[J].地质论评,:.
[42]  Sylvester A G. Strike-sfip faults [J]. Bulletin of Geological Society of America,1988, 100: 1666-1703.
[43]  Anderson D W, Rymer M J. Tectonics and sedimentation along faults of the San Andreas system:Los Angeles, Pacific section [M]. Society of Economic Paleontologists and Mineralogists,1983:110.
[44]  Biddle K T, Christie-Blick N. Strike-slip deformation, basin formation, and sedimentation [C]//Biddle K T, Christie-Blick N. Strikeslip deformation, basin foamation, and sedimentation. Society of Economic paleontologists and Mineralogists Special Publication, 1985,37: 375-385.
[45]  Deng Q, Zhang P, Chen S. Structure and deformation character of strike-slip fault zones[J]. Pure and Applied Geophy.,1986,124:203-223.
[46]  李海兵 戚学祥 朱迎堂 杨经绥 PaulTAPPONNIER 史连昌 王永文.2001年东昆仑地震(Ms=8.1)不对称的同震地表破裂构造――单侧块体运动为主及青藏高原内部物质向东滑移的证据[J].地质学报,2004,78(5):633-640.
[47]  Burbank D W, Anderson R S. Tectonic geomorphology[M]. Blackwell Publishing,2005.
[48]  Keller E A, Bonkowski M S, Korsch R J, et al. Tectonic geomor phology of the San Andreas fault zone in the southern Indio Hills, Coachella Valley[J]. California, Geological Society of America Bulletin, 1982, 93(1) :46-56.
[49]  Stein R S, King G C P, Rundle J B. The growth of geological structure by repeated earthquakes 2. Field examples of continental dip-slip faults[J]. J. of Geophy. Res., 1988, 93: 13319-13331.
[50]  Verges J, Burbank D W, Meigs A. Unfolding: an inverse approach to fold kinematics[J]. Geology, 1996, 24:175-178.
[51]  Burbank D W. Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin[J]. Nature, 1992, 357: 680-683.
[52]  Suppe J. Geometry and kinematics of fault-bend folding[J].American Journal of Science, 1983, 283: 684-721.
[53]  Suppe J, Medwedeff D. Geometry and kinematics of fault-propagation folding[J]. Eclogae Geologicae Helvetiae, 1990,83: 409-454.
[54]  Wickham J. Fault displacement-gradient folds and the structure at Lost Hills, California (USA) [J].Journal of Structural Geology, 1995,17: 1293-1302.
[55]  Hardy S, Poblet J. Geometric and numerical model of progressive limb rotation in detachment folds[J]. Geology, 1994,22: 371-374.
[56]  Poblet J, Munoz J A, Trave A, et al. Quantifying the kinematics of detachment folds using three-dimensional geometry: application to the Mediano Anticline (Pyrenees, Spain)[J]. GSA Bulletin,1998,110: 111-125.
[57]  Allmendinger R. Inverse and forward numerical modeling of trishear fault-propagation folds[J]. Tectonics,1998, 17 (4): 640-656.
[58]  Erslev E A. Trishear fault-propagation folding[J]. Geology,1991,19 (6):617-620.
[59]  Hardy S, Ford M. Numerical modeling of trishear fault propagation folding[J]. Tectonics, 1997, 16: 841-854.
[60]  李海兵 杨经绥 许志琴 等.阿尔金断裂带对青藏高原北部生长、隆升的制约田[J].地学前缘,2006,13(4):59-79.
[61]  Burchfiel B C, Deng Q, Molnar P, et al. Intracrustal detachment within zones of continental deformation[J]. Geology, 1989, 17(8): 748-752.
[62]  Meyer B, Tapponnier P, Bourjot L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau[J]. Geophysical Journal International, 1998, 135(1): 1-47.
[63]  Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677.
[64]  李海兵 VanderWoerdJ 孙知明等.阿尔金断裂带康西瓦段晚第四纪以来的左旋滑移速率及其大地震复发周期的探讨[J].第四纪研究,2008,28(2):197-213.
[65]  李海兵 P.Tapponnier 等.阿尔金走滑滑陷盆地的确定及其与山脉的关系[J].科学通报,:.
[66]  Huang W. Morphologic patterns of stream channels on the active Yishi Fault, southern Shandong Province, Eastern China: implication for repeated great earthquakes in the Holocene[J]. Tectonophysics, 1993,219:283-304.
[67]  Gaudemer Y, Tapponnier P, Turcotte D. River offsets across active strike-slip fault[J]. Ann. Tectonicae, 1989, Ⅲ :55-76.
[68]  Libby W F. Radiocarbon dating[M]. Chicago: University of Chicago Press, 1955:175.
[69]  Stuver M. Tree ring, varve and carbon-14 chronologies[J]. Nature, 1970, 228:454-455.
[70]  Ku T L. The uranium-series methods of age determination[J]. Annual Review of Earth and Planetary Sciences, 1976,4:347-379.
[71]  Berger G W. Dating Quaternary events by luminescence[C]//Easterbrook D J. Dating Quaternary sediments. Geological Society of America Special Paper, Boulder, 1988, 227:13-50.
[72]  Aitken M J. An Introduction to Optical Dating[M]. New York:Oxford University Press,1998:1-263.
[73]  Lal D. In Sire-produced cosmogenic isotopes in terrestrial rocks[J]. Annual Review of Earth and Planetary Sciences, 1988,16:355-388.
[74]  Nishiizumia K, Kohla C P, Arnolda J R, et al. Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion history[J].Earth and Planetary Science Letters,1991,104(2/4):440-454.
[75]  Cerling T E, Craig H. Geomorphology and insitu cosmogenic isotopes[J].Annual Reviews of Earth and Planetary Sciences, 1994, 22: 273-317.
[76]  Phillips F M, Leavy B D, Jannik N O, et al. The accumulation of cosmogenic chlorine-36 in rocks: a method for surface exposure dating[J]. Science,1986,231:41-43.
[77]  Zreda M G, Phillips F M, Elmore D, et al. Cosmogenic 36Cl production rates in terrest rial rocks[J]. Earth and Planetary Science Letters, 1991, 105: 94-109.
[78]  Westgate J A, Gorton M P. Correlation techniques in tephra studies [C]//Self S, Sparks R S J. Tephra Studies. D. Reidel Publishing Company, Dordrecht, 1981:73-94.
[79]  Sarna-Wojcicki A M, Lajoie K R, Meyer C E, et al. Tephrochronologic correlation of upper Neogene sediments along the Pacific margin, conterminous United States[C]//Mordson R B. Quaternary Nonglacial Geology. Boulder. The Geological Society of America, 1991:117-140.
[80]  Bada J L, Luyendyk B P, Maynard J B. Marine sediments: dating by the racemization of amino acids[J]. Science, 1970, 170:730-732.
[81]  Wehmiller J F, Belknap D F, Boutin B S, et al. A review of the aminostratigraphy of Quaternary mollusks from United States Atlantic Coastal Plain sites[C]//Easterbrook D L. Dating Quaternary Sediments. Spec. Pap.-Geol. Soc. Am.,1988, 227:69-110.
[82]  Cox A, Doell R R, Dalrymple G B. Reversals of the earth\\'s magnetic field[J]. Science, 1964,144:1537-1543.
[83]  Creer K M. The dispersion of the geomagnetic field due to secular variation and its determination for remote times from paleomagnetic data[J]. Journal of Geophysical Research, 1962,67:3461-3476.
[84]  Creer K M. Application of rock magnetism to investigations of the secular variation during geological time, magnetism and the cosmos [M]. Univ. Newcastle upon Tyne, NATO Advanced Study Inst. Planetary and Stellar Magnetism, 1967:45-59.
[85]  Lund S P. A comparison of Holocene paleomagnetic secular variation records from North America [J]. J. Geophys. Res., 1996,101034): 8007-8024.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133