全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质通报  2009 

长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义

, PP. 474-482

Keywords: 长石,溶解反应,热力学,次生孔隙

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于对反应过程吉布斯自由能增量的计算,探讨了长石的3种端元组成(钾长石、钠长石和钙长石)溶解生成高岭石、伊利石的热力学性质。结果表明:钾长石、钠长石和钙长石在成岩过程中均可以自发地向高岭石、伊利石转化。在长石的这3种类型中,钙长石溶解反应的吉布斯自由能增量最低,并明显具有正的温度效应,说明钙长石最不稳定且在低温条件下更易溶解;钾长石溶解反应的吉布斯自由能增量最高,并具有较大的负的温度效应,说明钾长石稳定性较高且在埋藏成岩条件下更易溶解;钠长石溶解反应的吉布斯自由能增量中等,受温度影响不大,但温度升高时其稳定性仍有所下降。与温度相比,压力对反应的吉布斯自由能增量几乎没有影响。因此,砂岩中的次生孔隙,尤其是埋藏成岩过程中形成的次生孔隙应与钾长石的关系最为密切,其次是钠长石,但其可能受到蒙皂石向伊利石转化反应的缓冲,在埋藏成岩条件下溶解较为困难,并可能造成斜长石的钠长石化或自生钠长石的沉淀。

References

[1]  Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity[J]. AAPG Memoir, 1984, 37: 127-149.
[2]  Surdam R C, Crossey L J. Integrated diagenetic modeling: a process-oriented approach for clastic systems[J]. Annual Review of Earth and Planetary Sciences, 1987, 15: 141-170.
[3]  Surdam R C, Crossey L J, Hagen E S, et al. Organic-inorganic and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73:1-23.
[4]  Bevan J, Savaget D. The effect of organic acids on the dissolution of K-feldspar under conditions relevant to burial eiagenesis[J]. Min. Mag., 1989, 53:415-425.
[5]  Franca A B, Aranujo L M, Maynard J B, et al.Secondary porosity formed by deep meteoric leaching: Botucatu eolianite, southern South America[J]. AAPG Bulletin, 2003, 87(7):1073-1082.
[6]  黄思静 武文慧 刘洁 沈立成 黄成刚.大气水在碎屑岩次生孔隙形成中的作用――以鄂尔多斯盆地三叠系延长组为例[J].地球科学:中国地质大学学报,2003,28(4):419-425.
[7]  Ronald K S, Edward D P. Secondary porosity revisited: The chemistry of feldspar dissolution by carboxylic [J]. Acids and Anions AAPG, 1990,74:1795-1808.
[8]  杨俊杰 黄思静.乙酸对长石砂岩溶蚀作用的实验模拟[J].石油勘探与开发,:.
[9]  黄思静 杨俊杰.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报,:.
[10]  史基安 晋慧娟.长石砂岩中长石溶解作用发育机理及其影响因素分析[J].沉积学报,:.
[11]  Andri S. Dissolution of primary minerals of basalt in natural waters.Ⅰ. Calculation of mineral solubilities from 0℃ to 350℃[J]. Chemical Geology, 2001, 172: 225-250.
[12]  Holloway J R. Fugacity and activity of molecular species in supercritical fluids [C]//Fraser D G. Thermodynamics in geology. Netherlands: D. Reidel Pub. Co., 1977:161-181.
[13]  殷辉安.岩石学相平衡[M].北京:地质出版社,1988.
[14]  Helgeson H C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. Ⅳ. Calculation of activity coefficients, osmotic coefficient, and apparent molal and standard and relative partial molal properties to 600℃ and 5 kb[J]. Am. J. Sci., 1981, 281: 1249-1516.
[15]  林传仙.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985.
[16]  Srodon J, Morgan D J, Eslinger E V, et al. Chemistry of illite/smectite and end member illite[J]. Clays and Clay Miner., 1986, 34(4): 368-378.
[17]  Lanson B, Champion D. The I/S to illite reaction in the late stage diagenesis[J]. Am. J. Sci.,1991, 291:473-506.
[18]  Berger G, Lacharpagne J C, Vedle B, et al. Kinetic constraints on initization reactions and the effects of organic diagenesis in sandstone/shale sequences[J]. Applied Geochemistry, 1997, 12: 23-35.
[19]  Thyne G, Boudreau B P. Simulation of potassium feldspar dissolution and illitization in the Statfjord Formation, North Sea[J].AAPG Bulletin, 2001, 85(4):621-635.
[20]  赖兴运 于炳松 陈军元 陈晓林 刘建清 梅冥相 靳卫广 程素华.碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用[J].中国科学:D辑,2004,42:45~53.
[21]  黄思静 覃建雄 张萌 等.鄂尔多斯盆地上古生界次生孔隙形成机制的实验模拟研究:内部资料[Z].中国石油长庆油田分公司勘探开发研究院,成都理工大学档案馆,2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133