全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Association of Duration of Sleep and Cardiovascular and Metabolic Comorbidities in Sleep Apnea Syndrome

DOI: 10.1155/2012/316232

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background/Aim. Previous population-based studies found association between duration of sleep and cardiovascular and metabolic comorbidities. Our aim was to investigate the association between the duration of sleep and cardiovascular and metabolic comorbidities in OSAS. Patients and Methods. The study enrolled 312 patients, who had polysomnography (PSG) during 2006-2007 and responded to a telephone-administered questionnaire providing information on characteristics of sleep on average 12 months after PSG. Results. Of the patients, 90 were female (28.8%), 173 (58.5) received the diagnosis of OSAS, 150 (45%) had no comorbidities, 122 had hypertension (HT), 44 had diabetes mellitus (DM), and 38 had coronary heart disease (CHD). Mean ± SD of age in years was , , , and for the no comorbidity, HT, DM, and CHD groups, respectively. Reported duration of sleep was not associated with any of the comorbidities in the overall group. In the analysis restricted to OSAS patients, sleep duration ≤6 hours was significantly associated with CHD after the adjustment for age, gender, and other associated factors (OR: 5.8, 95% CI: 1.0–32.6). Conclusions. Confirmation of the association between shorter duration of sleep and CHD will provide prognostic information and help for the management of OSAS. 1. Introduction Sleep loss is a common condition in modern society. Although the health effects of sleep deprivation have been obscure, recent epidemiological studies have revealed relationships between sleep deprivation and hypertension (HT), coronary heart disease (CHD), and diabetes mellitus (DM) [1]. Because sleep deprivation increases sympathetic nervous system activity, this increased activity serves as a common pathophysiology for HT, DM, and CHD. Previous studies showed that sleep duration less than 6 hours or more than 8 hours is associated with increased morbidity and mortality due to cardiovascular diseases in the general population [2, 3]. Obstructive sleep apnea syndrome (OSAS) is a common medical disorder that is growing in prevalence worldwide. It is characterized by recurrent cycles of intermittent hypoxia and there is increasing evidence that intermittent hypoxia plays a role in the development of cardiovascular risk in OSAS patients through the activation of inflammatory pathways. Some excellent review articles have already summarized the effects of OSAS on HT, CHD, and DM [4–6]. The pathogenesis of cardiovascular disease in OSAS is not completely understood but is likely to be multifactorial, involving a diverse range of mechanisms including sympathetic nervous

References

[1]  T. G. Pickering, “Could hypertension be a consequence of the 24/7 society? The effects of sleep deprivation and shift work,” Journal of Clinical Hypertension, vol. 8, no. 11, pp. 819–822, 2006.
[2]  D. L. Wingard and L. F. Berkman, “Mortality risk associated with sleeping patterns among adults,” Sleep, vol. 6, no. 2, pp. 102–107, 1983.
[3]  F. P. Cappuccio, D. Cooper, L. Delia, P. Strazzullo, and M. A. Miller, “Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies,” European Heart Journal, vol. 32, no. 12, pp. 1484–1492, 2011.
[4]  R. Wolk, A. S. M. Shamsuzzaman, and V. K. Somers, “Obesity, sleep apnea, and hypertension,” Hypertension, vol. 42, no. 6, pp. 1067–1074, 2003.
[5]  R. S. T. Leung and T. D. Bradley, “Sleep apnea and cardiovascular disease,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 12, pp. 2147–2165, 2002.
[6]  N. M. Punjabi and V. Y. Polotsky, “Disorders of glucose metabolism in sleep apnea,” Journal of Applied Physiology, vol. 99, no. 5, pp. 1998–2007, 2005.
[7]  W. T. McNicholas and M. R. Bonsignore, “Sleep apnoea as an independent risk for cardiovascular disease: current evidence, basic mechanisms and research priorities,” European Respiratory Journal, vol. 29, no. 1, pp. 156–178, 2007.
[8]  S. M. Caples, A. S. Gami, and V. K. Somers, “Obstructive sleep apnea,” Annals of Internal Medicine, vol. 142, no. 3, pp. 187–197, 2005.
[9]  A. Williams and S. M. Scharf, “Obstructive sleep apnea, cardiovascular disease, and inflammation—is NF-κB the key?” Sleep and Breathing, vol. 11, no. 2, pp. 69–76, 2007.
[10]  C. Iber, S. Ancoli-Israel, A. L. Chesson, and S. F. Quan, The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specifications, Westchester, Ill, USA, 2007.
[11]  The International Classification of Sleep Disorders: Diagnostic and Coding Manual, Westchester, Ill, USA, 2nd edition, 2005.
[12]  M. W. Johns, “Sleepiness in different situations measured by the Epworth Sleepiness Scale,” Sleep, vol. 17, no. 8, pp. 703–710, 1994.
[13]  N. S. Marshall, K. K. H. Wong, P. Y. Liu, S. R. J. Cullen, M. W. Knuiman, and R. R. Grunstein, “Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study,” Sleep, vol. 31, no. 8, pp. 1079–1085, 2008.
[14]  T. Young, L. Finn, P. E. Peppard et al., “Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort,” Sleep, vol. 31, no. 8, pp. 1071–1078, 2008.
[15]  F. J. Nieto, T. B. Young, B. K. Lind et al., “Association of sleep-disordered breathing sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study,” Journal of the American Medical Association, vol. 283, no. 14, pp. 1829–1836, 2000.
[16]  E. O. Bixler, A. N. Vgontzas, H. M. Lin et al., “Association of hypertension and sleep-disordered breathing,” Archives of Internal Medicine, vol. 160, no. 15, pp. 2289–2295, 2000.
[17]  M. Partinen and C. Guilleminault, “Daytime sleepiness and vascular morbidity at seven-year follow-up in obstructive sleep apnea patients,” Chest, vol. 97, no. 1, pp. 27–32, 1990.
[18]  S. T. Pendlebury, J. L. Pépin, D. Veale, and P. Lévy, “Natural evolution of moderate sleep apnoea syndrome: significant progression over a mean of 17 months,” Thorax, vol. 52, no. 10, pp. 872–878, 1997.
[19]  A. Zaninelli, R. Fariello, E. Boni, L. Corda, C. Alicandri, and V. Grassi, “Snoring and risk of cardiovascular disease,” International Journal of Cardiology, vol. 32, no. 3, pp. 347–351, 1991.
[20]  Y. Peker, J. Hedner, J. Norum, H. Kraiczi, and J. Carlson, “Increased incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: a 7-year follow-up,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 2, pp. 159–165, 2002.
[21]  J. M. Marin, S. J. Carrizo, E. Vicente, and A. G. N. Agusti, “Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study,” The Lancet, vol. 365, no. 9464, pp. 1046–1053, 2005.
[22]  L. S. Doherty, J. L. Kiely, V. Swan, and W. T. McNicholas, “Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome,” Chest, vol. 127, no. 6, pp. 2076–2084, 2005.
[23]  N. M. Punjabi, M. M. Ahmed, V. Y. Polotsky, B. A. Beamer, and C. P. O'Donnell, “Sleep-disordered breathing, glucose intolerance, and insulin resistance,” Respiratory Physiology and Neurobiology, vol. 136, no. 2-3, pp. 167–178, 2003.
[24]  M. S. M. Ip, B. Lam, M. M. T. Ng, W. K. Lam, K. W. T. Tsang, and K. S. L. Lam, “Obstructive sleep apnea is independently associated with insulin resistance,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 5, pp. 670–676, 2002.
[25]  N. M. Punjabi, E. Shahar, S. Redline, D. J. Gottlieb, R. Givelber, and H. E. Resnick, “Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study,” American Journal of Epidemiology, vol. 160, no. 6, pp. 521–530, 2004.
[26]  N. Meslier, F. Gagnadoux, P. Giraud et al., “Impaired glucose-insulin metabolism in males with obstructive sleep apnoea syndrome,” European Respiratory Journal, vol. 22, no. 1, pp. 156–160, 2003.
[27]  P. L. Enright, A. B. Newman, P. W. Wahl, T. A. Manolio, E. F. Haponik, and P. J. R. Boyle, “Prevalence and correlates of snoring and observed apneas in 5,201 older adults,” Sleep, vol. 19, no. 7, pp. 531–538, 1996.
[28]  W. K. Al-Delaimy, J. E. Manson, W. C. Willett, M. J. Stampfer, and F. B. Hu, “Snoring as a risk factor for type II diabetes mellitus: a prospective study,” American Journal of Epidemiology, vol. 155, no. 5, pp. 387–393, 2002.
[29]  G. V. Robinson, J. R. Stradling, and R. J. O. Davies, “Sleep · 6: obstructive sleep apnoea/hypopnoea syndrome and hypertension,” Thorax, vol. 59, no. 12, pp. 1089–1094, 2004.
[30]  R. A. Dart, J. R. Gregoire, D. D. Gutterman, and S. H. Woolf, “The association of hypertension and secondary cardiovascular disease with sleep-disordered breathing,” Chest, vol. 123, no. 1, pp. 244–260, 2003.
[31]  C. W. H. Davies, J. H. Crosby, R. L. Mullins, C. Barbour, R. J. O. Davies, and J. R. Stradling, “Case-control study of 24 hour ambulatory blood pressure in patients with obstructive sleep apnoea and normal matched control subjects,” Thorax, vol. 55, no. 9, pp. 736–740, 2000.
[32]  J. L. Kiely and W. T. McNicholas, “Cardiovascular risk factors in patients with obstructive sleep apnoea syndrome,” European Respiratory Journal, vol. 16, no. 1, pp. 128–133, 2000.
[33]  S. R. Coughlin, L. Mawdsley, J. A. Mugarza, P. M. A. Calverley, and J. P. H. Wilding, “Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome,” European Heart Journal, vol. 25, no. 9, pp. 735–741, 2004.
[34]  D. F. Kripke, R. N. Simons, L. Garfinkel, and E. C. Hammond, “Short and long sleep and sleeping pills. Is increased mortality associated?” Archives of General Psychiatry, vol. 36, no. 1, pp. 103–116, 1979.
[35]  M. Partinen, P. T. S. Putkonen, J. Kaprio, M. Koskenvuo, and I. Hilakivi, “Sleep disorders in relation to coronary heart disease,” Acta Medica Scandinavica, vol. 212, supplement 660, pp. 69–83, 1982.
[36]  Y. Liu, H. Tanaka, H. Kodama et al., “Overtime work, insufficient sleep, and risk of non-fatal acute myocardial infarction in Japanese men,” Occupational and Environmental Medicine, vol. 59, no. 7, pp. 447–451, 2002.
[37]  N. T. Ayas, D. P. White, J. E. Manson et al., “A prospective study of sleep duration and coronary heart disease in women,” Archives of Internal Medicine, vol. 163, no. 2, pp. 205–209, 2003.
[38]  C. Meisinger, M. Heier, H. L?wel, A. Schneider, and A. D?ring, “Sleep duration and sleep complaints and risk of myocardial infarction in middle-aged men and women from the general population: the MONICA/KORA Augsburg cohort study,” Sleep, vol. 30, no. 9, pp. 1121–1127, 2007.
[39]  Y. Amagai, S. Ishikawa, T. Gotoh, K. Kayaba, Y. Nakamura, and E. Kajii, “Sleep duration and incidence of cardiovascular events in a Japanese population: the Jichi Medical School cohort study,” Journal of Epidemiology, vol. 20, no. 2, pp. 106–110, 2010.
[40]  E. Kronholm, T. Laatikainen, M. Peltonen, R. Sippola, and T. Partonen, “Self-reported sleep duration, all-cause mortality, cardiovascular mortality and morbidity in Finland,” Sleep Medicine, vol. 12, no. 3, pp. 215–221, 2011.
[41]  Y. Hamazaki, Y. Morikawa, K. Nakamura et al., “The effects of sleep duration on the incidence of cardiovascular events among middle-aged male workers in Japan,” Scandinavian Journal of Work, Environment and Health, vol. 37, no. 5, pp. 411–417, 2011.
[42]  N. M. Al Lawati, S. R. Patel, and N. T. Ayas, “Epidemiology, risk factors, and consequences of obstructive sleep apnea and short sleep duration,” Progress in Cardiovascular Diseases, vol. 51, no. 4, pp. 285–293, 2009.
[43]  W. B. Borden and M. H. Davidson, “Updating the assessment of cardiac risk: beyond Framingham,” Reviews in Cardiovascular Medicine, vol. 10, no. 2, pp. 63–71, 2009.
[44]  M. Dochi, K. Sakata, M. Oishi, K. Tanaka, E. Kobayashi, and Y. Suwazono, “Smoking as an independent risk factor for hypertension: a 14-year longitudinal study in male Japanese workers,” Tohoku Journal of Experimental Medicine, vol. 217, no. 1, pp. 37–43, 2009.
[45]  W. W. Schmidt-Nowara, D. B. Coultas, C. Wiggins, B. E. Skipper, and J. M. Samet, “Snoring in a Hispanic-American population: risk factors and association with hypertension and other morbidity,” Archives of Internal Medicine, vol. 150, no. 3, pp. 597–601, 1990.
[46]  R. D'Alessandro, C. Magelli, G. Gamberini et al., “Snoring every night as a risk factor for myocardial infarction: a case-control study,” British Medical Journal, vol. 300, no. 6739, pp. 1557–1558, 1990.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133