全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地球学报  2004 

藏北美多锑矿带地质地球化学特征及其地球动力学背景探讨

Keywords: 藏北,锑矿,氦氩同位素,碰撞造山带,后碰撞阶段

Full-Text   Cite this paper   Add to My Lib

Abstract:

藏北美多锑矿带位于小唐古拉山南麓,东西长200km、南北宽40km,已发现锑矿床(点)10多处,其中以美多矿床规模最大。锑矿产于上三叠统土门格拉群的硅质岩组,受NW向和NE向断裂联合控制。矿石矿物主要为辉锑矿,脉石矿物有石英、蛋白石和方解石等。矿石类型有浸染状硅质岩型、辉锑矿一石英脉型、角砾状硅质岩型、辉锑矿一方解石脉型等4种。矿石硫、铅、氦、氩同位素研究表明,成矿流体为大气降水,成矿物质不可能主要由围岩地层提供,地幔物质参入成矿明显。成矿年龄为20Ma,处于青藏高原新生代大陆碰撞造山带形成演化的后碰撞构造阶段。成矿作用在时间与空间上与藏北大规模富碱中性熔岩所对应的构造热事件(30-10Ma)相耦合以及地幔物质参入成矿的事实表明,藏北锑矿带的形成可能与中新世以来造山带增厚岩石圈底部拆沉作用引起的软流圈上升和地幔底辟作用有关。

References

[1]  Wang Chengshan;TangJuxing;Gu Xuexiang,Preliminary analysis on Himalayan tectonic metallogenetic domain and its minera lization effect,Journal of Mineralogy and Petrology(in Chinese),2001(03).
[2]  Bureau of Geology and Mineral Resources f Qinghai Province,Regional geological surveying report of the Tanggulashankou and Longya,PRC,scale 1:200000,北京:地质出版社,1998.
[3]  Bureau of Geology and Mineral Resources of Tibet,Regional geo-logy of Tibet,北京:地质出版社,1993.
[4]  许志琴;姜枚;杨经绥,青藏高原北部隆升的深部构造物理作用-以"格尔木-唐古拉山"地质及地球物理综合剖面为例,地质学报,1996(03).
[5]  西藏自治区地质矿产局,西藏自治区区域地质志,北京:地质出版社,1993.
[6]  王登红;杨建民;闫升好.西南三江地区新生代矿集区的分布格局及找矿前景[J].地球学报,2002(02)
[7]  青海省地质矿产局区调综合地质大队,中华人民共和国区域地质调查报告(1:20万唐古拉山口幅、龙亚幅),北京:地质出版社,1998.
[8]  Zartman R.E;Doe B.R,Plumbotectonics-the model,Tectonophysics? ,1981, 75.
[9]  Zhang R H,Sulfur isotopes and pyrite-anhydrite equilibria in a volcanic basin hydrothermal system of the Middle to Lower Yangtze Valley,Economic Geology,1986.
[10]  Xu Zhiqin;JiangMei;Yang Jingsui,Tectonophysical process at depth for the uplift of the northern part of the Qinghai-Tibet plateau :Illustrated by the geological and geophysical comprehension profile from Golmud to the Tanggula mountains,Qinghai province,China,Acta Geologica Sinica,1996(03).
[11]  Taylor SR;MclennanSM,The continental crust:its composition and evolution,Balckwell Scientific Publication,Oxford,1985.
[12]  邓万明,青藏高原北部新生代板内火山岩,北京:地质出版社,1998.
[13]  OXBURGH E R;O\'NionsPK;Hill R I,Helium isotopes in sedimentary basins,NATURE,1986.
[14]  Owens T J;ZandtG Implications of crustal property variation for models of Tibetan plateau evolution [J] 1997(6628) doi:10.1038/387037a0
[15]  Ohmoto H;GoldhaberMB,Sulfur and carbon isotopes,Wiley,New York,1997.
[16]  MAMYRIN B A;TolstikhinIN,Helium Isotopes in Nature,Amsterdam:Elsevier,1984.
[17]  KOSAREV G;KindR;Sobolev SV Seismic evidence for a detached Indian lithospheric mantle beneath Tibet [J] 1999(5406) doi:10.1126/science.283.5406.1306
[18]  Hu Ruizhong;BiXianwu;Turner G.Helium and argon isotope of the ore-forming fluids in Ailaoshan metallogenic belt[J].中国科学D辑,1999(04)
[19]  Ding Lin;ZhangJinjiang;Zhou Yong.Tectonic implication on the lithosphere evolution of the Tibet Plateau: Petrology and geochemistry of sodic and ultrapotassic volcanism in Northern Tibet[J].Acta Petrologica Sinica,1999(03)
[20]  Deng Wanming,Cenozoic intraplate volcanic rocks in the Northern Qinghai-Xizang plateau,北京:地质出版社,1998.
[21]  Chen Wenming;LiYongsen;Qi Shaomei.Distribution of Nonferrous metallic resources in Qinghai-Tibet plateau[J].Acta Geoscientia Sinica,2000(01)
[22]  Baptiste P J;FouquetY,A,Acta Geochimica Cosmochimica,1996(01).
[23]  ARNAUD N O;VidalP;Tapponnier P,The high K2O volcanism of northwestern Tibet:Geochemistry and tectonic implications,Earth and Planetary Sciences Letters,1992.
[24]  张理刚,稳定同位素在地质科学中的应用,西安:陕西科学技术出版社,1985.
[25]  尹安.喜马拉雅-青藏高原造山带地质演化:显生宙亚洲大陆生长[J].地球学报,2001(03)
[26]  陈文明;李永森;亓绍玫.青藏高原有色金属矿产分布特征[J].地球学报,2000(01)
[27]  胡瑞忠;毕献武;Turner G.哀牢山金矿带金成矿流体He和Ar同位素地球化学[J].中国科学D辑,1999(04)
[28]  丁林;张进江;周勇.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征[J].岩石学报,1999(03)
[29]  Boyle R W;Jonasson I R,The geochemistry of antimony and its use as an indicator element in geochemical prospecting,Journal of Geochemical Exploration? ,1984, 20(03).
[30]  王成善;唐菊兴;顾雪祥.喜马拉雅构造成矿域及其成矿效应初步分析[J].矿物岩石,2001(03)
[31]  Zhang Ligang,The application of the stable isotope to geology-the hydrothermal mineralization of metal activation and it\'s prospecting,Xi\'an:Shanxi Science and Technology Publishing House,1985.
[32]  Yin An.Geological evolution of the Himalayan-Tibet orogen in context of Phanerozoic continental growth of Asia[J].Acta Geoscientia Sinica,2001(03)
[33]  Turner G;BurnardPB;Ford J L,Tracing fluid sources and interaction,Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences,1993.
[34]  Trull T W;KurzMD;Jenkins W J,Diffusion of cosmogenic 3He in olivine and quartz:implications for surface exposure dating,Earth and Planetary Sciences Letters,1991.
[35]  STUART F M;BurnardPG;Taylor R P,Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea,Acta Geochimica Cosmochimica,1995(22).
[36]  Simmons S F;GemmellJB;Sawkins F J,The Santo Nino silver-lead-zinc vein, Fresnillo District, Zacatecas, Mexico: Part II,Physical and chemical nature of ore-forming solutions Econ Geol,1988.
[37]  Wang Denghong;YangJianmin;Yan Shenghao.Cenozoic ore concentration areas in the Sanjiang region, SW China :Tectonic setting and exploration[J].Acta Geoscientia Sinica,2002(02)
[38]  Robinson B W;FarrandMG,Sulfur isotopes and the origin of stibnite mineralization in New England,Australian Mineralium Deposita,1982.
[39]  England P;Houseman G,Extension during continental convergence,with application to the Tibetan Plateau,Journal of Geophysical Research? ,1989, 94.
[40]  Chung SL. ;Lo CH. ;Lee TY. ;Zhang YQ. ;Xie YW. ;Li XH. ;Wang KL. ;Wang PL.,Diachronous uplift of the Tibetan plateau starting 40 Myr ago,Nature?,1998, 394(6695).
[41]  Bottinga Y,Calculation of fractionation factors for carbon dioxide-water,Journal of Physical Chemistry,1969(03).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133