全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华北克拉通1.75Ga基性岩墙群特征及其研究进展

, PP. 457-470

Keywords: 华北克拉通,.Ga,基性岩墙群,地幔柱,碰撞后

Full-Text   Cite this paper   Add to My Lib

Abstract:

基性岩墙群是地壳伸展背景下,来自地幔的基性岩浆侵入体。华北克拉通同世界上其它克拉通一样,广泛发育前寒武纪基性岩墙群。它们在不同时代均有产生,其中1.75Ga前后的规模最大,分布范围最广,几乎遍布整个克拉通,对其进行深入研究,可以揭示华北克拉通该期构造演化过程。华北克拉通1.75Ga前后的岩墙几何形态多变,直立或近直立,走向主要为NNW向和近EW向。岩石以拉斑玄武质岩类占绝对优势(>80%),主要造岩矿物为单斜辉石和斜长石。根据岩墙走向、岩浆分异程度和岩石地球化学特征可将其分五组:低分异LT组、低分异HT组、高分异NW组、高分异EW组,以及具明显差异的高铁系列。同位素和微量元素研究显示,岩浆源区主要与富集Ⅰ型地幔(EMⅠ)、弱亏损的常规地幔(DM?PREMA)以及陆下岩石圈地幔有关。目前对华北克拉通1.75Ga基性岩墙群产出的构造环境在认识上有分歧,其中地幔柱观点和碰撞后伸展观点最为人们所关注。

References

[1]  Lu Songnian, Yang Chunliang, Li Huaikun and Li Huiming. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5:123-131.
[2]  McBirney A T. 1989. The Skaergaard layered series I: Structure and average compositions. Journal of Petrology, 30(2):297-363.
[3]  Mchoney J J. 1988. Deccan traps. In:MacDougall J D (eds). Continental Flood Basalt. Kluwer Acad Publ, 151-194.
[4]  Pirajno F and Chen Y J. 2005. The Xiong''er Group:A 1.76Ga large igneous province in East?Central China? from www. largeigneousprovinces. com.
[5]  Peng Peng, Zhai Mingguo, Zhang Huafeng and Guo Jinghui. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different type of mafic dykes. International Geology Review, 47:492-508.
[6]  Peng Peng, Zhai Mingguo, Guo Jinghui, Kusky T and Zhao Taiping. 2006. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78Ga mafic dykes in the central North China Craton. Gondwana Research (in press).
[7]  Qian Xianglin and Chen Yiping. 1987. Late Precambrian mafic dyke swarms of the North China Craton. In: Halls H C and Fahrig W F (eds). Mafic Dykes Swarms. Geology Association of Canada Special Paper, 34:385-391.
[8]  Xu Yigang, Chung Sunlin, Jahn, B M and Wu Genyao. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian?Triassic Emeishan flood basalts in southwestern China. Lithos, 58:145-168.
[9]  Xu Yigang, Mei Houjun, Xu Jifeng, Huang Xiaolong, Wang Yamei and Chung Sunling. 2003. Origin of two differentiation trends in the Emeishan flood basalts. Chinese Sci Bull, 48:390-394.
[10]  侯贵廷,钱祥麟,李江海. 2002. 华北克拉通中元古代岩墙群形成的构造应力场数值模拟.北京大学学报(自然科学版),3(4):492-496.
[11]  李怀坤,李惠民,陆松年. 1995. 长城系团子山组火山岩颗粒锆石U?Pb年龄及其地质意义. 地球化学,24(1):43-48.
[12]  李江海,何文渊,钱祥麟. 1997. 元古代基性岩墙群的成因基质、构造背景及其古板块再造意义. 高校地质学报,3(3):272-281.
[13]  李江海,侯贵廷,钱祥麟,Halls H C, Davis D. 2001. 恒山中元古代早期基性岩墙群的单颗粒锆石U?Pb年龄及其克拉通构造演化意义. 地质评论,47(3):234-238.
[14]  李铁胜. 1999. 冀东太平寨-遵化新太古代古岛弧地体及其大陆生长(博士学位论文). 北京:中国科学院地质与地球物理研究所.
[15]  廖超林,王岳军,彭头平. 2003. 太行山南段早元古代基性脉岩的40Ar?39Ar年代学及其构造意义. 大地构造与成矿学,27(4):354-361.
[16]  廖超林. 2003. 南太行山早元古代基性岩脉的地球化学特征及其构造意义(硕士学位论文). 广州:中国科学院广州地球化学研究所.
[17]  林 舸,Y H Zhang,王岳军,郭 锋,范蔚茗,阎义.2004.华北陆块岩石圈减薄作用:热薄化与机械拉伸的数值模拟研究.大地构造与成矿学,28(1):8-14.
[18]  陆松年,李惠民. 1991. 蓟县长城系大洪峪组火山岩中锆石精确定年. 中国地质科学院院报,22:137-145.
[19]  牛利锋,张宏福.2005.南太行山地区中基性侵入岩中角闪石的矿物学及其成因. 大地构造与成矿学,29(2):269-277.
[20]  彭澎. 2005. 华北克拉通中部Ca. 1.8Ga镁铁质岩墙群的成因和构造意义(博士学位论文). 北京:中国科学院地质与地球物理研究所.
[21]  彭头平,王岳军,彭冰霞. 2005. 一种罕见的岩石――富铁玄武岩/富铁苦橄岩研究进展. 地球科学进展,20(5):525-532.
[22]  宋述光. 1990. 冀东太平寨地区变质岩脉群研究. 长春地质学院学报,20(4):421-428.
[23]  孙大中,胡维兴. 1993. 中条山前寒武纪年代学构造格架和年代地壳结构. 北京:地质出版社,79-117.
[24]  王楫,李双庆,王保良,李家驹. 1992. 狼山-白云鄂博裂谷系. 北京:北京大学出版社, 1-132.
[25]  吴昌华,李惠民,钟长汀,左义成. 2000. 阜平片麻岩和湾子片麻岩的单颗粒锆石U?Pb年龄――阜平杂岩并非一统太古宙基底的年代学证据. 前寒武纪研究进展,23(3):129-139.
[26]  伍家善,耿元生,沈其韩,万渝生,刘敦一,宋彪. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京:地质出版社,1-104.
[27]  郁建华,付会芹,I 哈巴拉,O T 拉莫,M 发斯乔基. 1996. 华北克拉通北部1.70Ga非造山环斑花岗岩岩套. 华北地质矿产杂志,11(3):341-350.
[28]  赵太平,陈福坤,翟明国,夏斌. 2004. 河北大庙斜长岩杂岩体锆石U?Pb年龄及其地质意义. 岩石学报,20:685-690.
[29]  赵太平,金成伟,翟明国,夏斌,周美夫. 2002. 华北陆块南部熊耳群火山岩的地球化学特征与成因. 岩石学报,18(1):59-69.
[30]  庄育勋,王新社,徐洪林,任志康,张富中,张锡明. 1997. 泰山地区早前寒武纪主要地质事件与陆壳演化. 岩石学报,3:313-330.
[31]  Abbott D H and Isley A E. 2002. The intensity, occurrence, and duration of superplume events and eras over geological time. Journal of Geodynamics, 34:265-307.
[32]  Anderson D L. 1989. Composition of the Earth. Science, 243:367-370.
[33]  Baer G and Heiman A. 1995. Physics & Chemistry of Dykes. A Balkema, Rotterdam, Netherlands.
[34]  Bhattaharyya C. 1971. An evaluation of the chemical distinctions between igneous and metamorphic orthopyroxenes. American Mineralogist, 56:499-506.
[35]  Bowen N L. 1928. The evolution of the igneous rocks. Princeton:Princeton University Press, 334.
[36]  Brooks C K, Larsen L M and Nielsen T F D. 1991. Importance of iron?rich tholeiitic magmas at divergent plate margins: A reappraisel. Geol, 19:269-272.
[37]  Condie K C. 1997. Source of Proterozoic mafic swarms:Constraints from Th/Ta and La/Yb ratios. Precambrian Research, 81:3-14.
[38]  Davis G F. 1999. Dynamic Earth Plates, Plumes and Mantle Convection. Cambridge, UK: Cambridge University Press, 455.
[39]  Ernst R E, Buchan K L and Palmer H C. 1995. Giant dyke swarms:Characteristics, distribution and geotectonic application. In: Baer G and Heimann A(eds). Physics and chemistry of dykes. Balkema, Rotterdan, 3-21.
[40]  Fenner C N. 1929. The crystallization of basalt. Am J Sci, 18:223-253.
[41]  Foley S. 1992. Petrological characterization of the source components of potassic magmas: Geochemical and experimental constraints. Lithos, 13:281-289.
[42]  Frey F A. 1978. Intergrated models of basaltic petrogenesis: a study of quartz tholeiite to olivine melilite from southeastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19:463-513.
[43]  Gallagher K and Hawkesworth C. 1992. Dehydration melting and the generation of continental flood basalts. Nature, 358:57-59.
[44]  Gibson S A, Thompson R N and Dickin A P. 2000. Ferropicrites:geochemical evidence for Fe?rich streaks in upwelling mantle plumes. Earth and Planetary Science Letters, 174:355-374.
[45]  Hauri E H, Whitehead J A and Hart S R. 1994. Fluid dynamic and geochemical aspects of entrainment in mantle plumes. Journal of Geophysics Research, 99(24):275-300.
[46]  Hauri E H. 1996. Major?element variability in the Hawaiian mantle plume. Nature, 382:415~419.
[47]  Hirose K and Kushiro I. 1993. Partial melting of dry peridotites at high pressure:Determination of compositions of diamond. Earth Planet Sci Lett, 114:477-489.
[48]  Hou Guiting, Li Jianghai and Qian Xianglin. 2003. The flow structures and mechanics of late Precambrian mafic dyke swarms in the North China Craton. Acta Geologica Sinica, 77(2):210-216.
[49]  Hou Guiting, Liu Yulin and Li Jianghai. 2006. Evidence for ~1.8 Ga extension of the Eastern Block of the North China Craton from SHRIMP U?Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences, 27:392-401.
[50]  Jang Y D, Naslund H R and McBimey A R. 2001. The differentiation trend of the Skaergaard intrusion and the timing of magnetite crystallization:Iron enrichment revisited. Earth Planet Sci Lett, 189:189-196.
[51]  Jensen L S. 1976. A new cation plot for classifying subalkaline volcanic rocks. Ontario Geology Survey, Miscellaneous Paper, 66.
[52]  Kellogg L H and King S D. 1993. Effect of mantle plumes on the growth of D" by reaction between the core and mantle. Geophysical Research Letters, 20:379-382.
[53]  Kepezhinskas P, McDermott F, Defant M J, Hochestaedter A and Drummond M S. 1997. Trace element and Sr?Nd?Pb isotopic constraints on a three?component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta, 61 (3):577-600.
[54]  Kerrich R, Polat A, Wyman D A and Hllings P. 1999. Trace element systematics of Mg? to Fe?tholeiitic basalt suites of the Superior Province:Implications for Archean mantle reservoirs and greenstone belt genesis. Lithos, 46:163-187.
[55]  Kohn M J and Spear F S. 1990. Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. American Mineralogy and Petrology, 99:44-48.
[56]  Kr?ner A, Zhao Guochun, Wilde S A, Zhai Mingguo, Passchier C W, Sun Ming, Guo Jinghui, O′Brien P J and Walte N. 2002. A late Archean to early Proterozoic lower to upper crustal section in the Hengshan?Wutaishan area of northern China. Guidebook for Penrose Conference Field Trip. Penrose Conference, Beijing, 32-39.
[57]  Kusky T M, Li Jianghai and Tucker R D. 2001. The Archean Dongwanzi ophiolite complex, North China Craton:2.505?billion?year?old oceanic crust and mantle. Science, 292:1142-1145.
[58]  Kusky T M and Li Jianghai. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22:383-397.
[59]  LaFlèche M R, Camiré G and Jenner G A. 1998. Geochemistry of post?Acadian, Carboniferous continental intraplate basalts from the Maritimes basin, Magdalen islands, Québec, Canada. Chem Geol, 148:115-136.
[60]  Leybourne M, Wangoner N V and Ayres L. 1999. Partial melting of a refractory subducted slab in a Paleoproterozoic island arc:Implications for global chemical cycles. Geology, 27(8):731-734.
[61]  白谨,黄光学,王惠初. 1996. 中国前寒武纪地壳演化(第二版). 北京:地质出版社,1-259.
[62]  陈曼云. 1990. 高级变质岩区基性岩脉群的研究――以太平寨-金厂峪地区为例. 地质学报,2:157-169.
[63]  邓晋福,吴宗絮,赵国春,赵海玲,罗世华,莫宣学. 1999. 华北地台前寒武纪花岗岩类、陆壳演化与克拉通形成. 岩石学报,15(2):190-198.
[64]  范蔚茗,郭锋.2005.华北地区晚中生代镁铁质岩浆作用及其地球动力学背景. 大地构造与成矿学,29(1):44-55.
[65]  侯贵廷,李江海,金爱文,钱祥麟. 2005. 鲁西前寒武纪基性岩墙群. 地质学报,79(2):190-200.
[66]  侯贵廷,李江海,钱祥麟. 2001. 晋北地区中元古代岩墙群的地球化学特征和大地构造背景. 岩石学报,17(3):352-357.
[67]  Halls H C, Li Jianghai, Davis D, Hou Guiting, Zhang Baoxing and Qian Xianglin. 2000. A precisely dated Proterozoic paleomagnetic pole form the North China Craton, and its relevance to paleocontinental construction. Geophysical Journal International, 143:185-203.
[68]  Hanski E J and Smolkin V F. 1995. Iron and LREE?enriched mantle source for early Proterozoic intraplate magmatism as emplified by the Pechenga ferropicrites, Kola Peninsula, Russia. Lithos, 34:107-125.
[69]  Hart S R. 1988. Heterogeneous mantle domains:Signatures, genesis and mining chronologies. Earth Planet Science Letters, 90:273-296.
[70]  Harte B, Hutchinson M T and Lee Ming. 1998. Inclusions of (Mg, FeO) in mantle diamonds. 7th Int Kimb Conf Extended Abstracts, 308-310.
[71]  Ramo O T, Haapala I, Vaasjoki M, Yu Jianhua and Fu Huiqin. 1995. 1700Ma Shachang complex, northeast China:Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology, 23:815-818.
[72]  Smith T E, Harris M J, Huang C H and Holm P E. 2001. The geochemical nature of the igneous rocks of the Sharbot Lake domain, Central Metasedimentary Belt, Ontario. Can J Earth Sci, 38:1037-1057.
[73]  Sun Dazhong, Hu Weixing and Tang Min. 1990. Origin of late Archean and early Proterozoic rocks and associated mineral deposits from the Zhongtiao Mountains, East?Central China. Precambrian Research, 47:287-306.
[74]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts implications for mantle composition and process. In:Saunders A D and Nony M J (eds). Magmatism in the ocean basins. Geological Society Special Publication, 42:313-354.
[75]  Tarney J and Weaver B L. 1987. Mineralogy, Petrology, and geochemistry of the Scourie dykes petrogenesis and crystallization processes in dykes intruded at depth. Geol Soc London Spec Publ, 27:217-233.
[76]  Tarney J. 1992. Geochemistry and signification of mafic dykes swarms in the Proterozoic. Developments in Precambrian. Geology, 10:151-179.
[77]  Takahashi E, Nakajima K and Wright T L. 1998. Origin of the Columbia River basalts:Melting model of a heterogeneous plume head. Earth Planet Sci Lett, 162:63-80.
[78]  Taylor S R and McLennan S M. 1985. The continental crust: its composition and evolution. Blackwell, Oxford Press, 321.
[79]  Wang Yuejun, Fan Weiming, Zhang Yanhua, Guo Feng, Zhang Hongfu and Peng Touping. 2004. Geochemical, 40Ar/39Ar geochronological and Sr?Nd isotopic constraints on the origin of Paleoproterozoic mafic dykes from the southern Taihang Mountains and implications for the ca. 1800Ma event of the North China Craton. Precambrian Research, 135:55-77.
[80]  Wilde S A, Zhao Guochun and Sun Min. 2002. Development of the North China Craton during the Late Archean and its final amalgamation at 1.8Ga:Some speculation on its position within a global Paleoproterozoic supercontinent. Gondwana Research, 5:85-94.
[81]  Zhai Mingguo, Bian Aiguo and Zhao Taiping. 2000. Amalgamation of the supercontinental of the North China Craton and its breakup during late?middle Proterozoic. Science in China (Series D), 43:219-232.
[82]  Zhai Mingguo and Liu Wenjun. 2003. Paleoproterozoic tectonic history of the North China Craton:A review. Precambrian Research, 122:183-199.
[83]  Zhai Mingguo, Guo Jinghui, Li Yonggang, Liu Wenjun, Peng Peng and Shi Xin. 2003. Two linear granite belts in the central?western North China Craton and their implication for late Neo?Archean?Paleoproterozoic continental evolution. Precambrian Research, 127:267-283.
[84]  Zhao Guochun, Wilde S A, Cawood P A and Sun Min. 1998. Thermal evolution of the Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geological Review, 40:706-721.
[85]  Zhao Guochun, Gawood P A, Wilde S A, Sun Min and Lu Linagzhao. 2000. Metamorphism of basement rocks in central zone of the North China Craton:Implication for Paleoproterozoic tectonic evolution. Precambrian Research, 103:55-88.
[86]  Zhao Guochun, Wilde S A, Cawood P A and Sun Ming. 2001. Archean blocks and their boundaries in the North China Craton:Lithological, geochemical, structural and P?T path constraints and tectonic evolution. Precambrian Research, 107:45-73.
[87]  Zhao Guochun, Sun Min, Wilde S A and Li Sanzhong. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136:177-202.
[88]  Zhao Taiping, Zhou Meifu and Zhai Mingguo. 2002. Paleoproterozoic rift?related volcanism of the Xiong''er Group, North China Craton:Implication for the breakup of Columbia. International Geology Review, 44:336-351.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133