Arai S. 1994. Characterization of spinel peridotites by olivine?spinel compositional relationships: Review and interpretation. Chemical Geology, 113: 191-204.
[3]
Barth M G, Manson P R D, Davies G R, Dijkstra A and Drury M R. 2003. Geochemistry of the Othris ophiolite, Greece: Evidence for refertilization? Journal of Petrology, 44: 1759-1785.
[4]
Dick H J B and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine?type peridotites and spatially associated lavas. Contrib Mineral Petrol, 86: 54-76.
[5]
Dubois?C?té V, Hébert R, Dupuis C, Wang C S, Li Y L and Dostal J. 2005. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chemical Geology, 214: 265-286.
[6]
Ewart A, Bryan W N, Chappell B W and Rudnick R L. 1994. Regional geochemistry of the Lau?Tonga arc and backarc systems. Proceedings of the ODP Scientific Results, 135. Ocean Drilling Program,College Station, Texas, 385-425.
[7]
Girardeau J, Mercier J C C and Xibin W. 1985. Petrology of the mafic rocks of the Xigaze ophiolite, Tibet: Implications for the genesis of the oceanic lithosphere. Contrib Mineral Petrol,90:309-321.
[8]
Hart S R and Zindler A. 1986. In search of a bulk Earth composition. Chemical Geology, 57: 247-267.
[9]
Hirose K and Kawamoto T. 1995. Hydrous partial melting of lherzolite at 1GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett, 133: 463-473.
[10]
Ishii T, Robinson P T, Maekawa H and Fiske R. 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu?Mariana forearc, Leg 125. In: Fryer P, Pearce J A and Stokking L B (eds). Proceedings of the ODP Scientific Results, 125. Ocean Drilling Program,College Station, Texas, 445-485.
[11]
Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorentz V and W?nke H. 1979. The abundance of major, minor and trace elements in the Earth''s mantle as derived from primitive ultramafic nodules. Proceedings of the Lunar and Planetary Scientific Conference. Geochim Cosmochim Acta (Supplement), 10: 2031-2050.
[12]
Kelemen P B, Shimizu N and Salters V J M. 1995. Extraction of mid?ocean ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature,375:747-753.
[13]
Le Mée L, Girardeau J and Monnier C. 2004. Mantle segmentation along the Oman ophiolite fossil mid?ocean ridge. Nature,432:167-172.
[14]
Malpas J, Zhou M F, Robinson P T and Reynolds P H. 2003. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. In: Dilek Y and Robinsin P T (eds). Ophiolites in Earth History. London: Geological Society, Special Publications, 218: 147-164.
[15]
McDermid I R C, Aitchison J C, Davis A M , Harrison T M and Grove M. 2002. The Zedong terrane: A Late Jurassic intraoceanic magmatic arc within the Yarlung?Tsangpo suture zone, southeastern Tibet. Chemical Geology, 187:267-277.
[16]
Nicolas A. 1986. A melt extraction model based on structural studies in mantle peridotite. Journal of Petrology, 27: 999-1022.
[17]
Niu Y. 2004. Bulk?rock major and trace element compositions of abyssal peridotites: Implications for mantle melting,melt extraction and post?melting processes beneath mid?ocean ridges. Journal of Petrology,45: 2423-2458.
[18]
Parkinson I J and Pearce J A. 1998. Peridotites from the Izu?Bonin?Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt?mantle interaction in a supra?subduction zone setting. Journal of Petrology, 39: 1577-1618.
[19]
Paulick H, Bach W, Godard M, De Hoog J C M, Suhr G and Harvey J. 2006. Geochemistry of abssal peridotites (Mid?Atlantic Ridge, 15°20′N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234: 179-210.
[20]
Pearce J A, Barker P F, Edwards S J, Parkinson I J and Leat P T. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc?basin system, South Atlantic. Contrib Mineral Petrol, 139: 36-53.
[21]
Pearce J A and Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol, 69: 33-47.
[22]
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saundes A D and Norry M J (eds). Magmatism in the Ocean Basins. London: Geological Society, Special Publications, 42: 313-345.
[23]
Van der Voo R, Spakman, W and Bijwaard H. 1999. Tethyan subducted slabs under India. Earth Planet Sci Lett, 171: 7-20.
[24]
Wood D A. 1980. The application of a Th?Hf?Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett, 50: 11-30.
[25]
Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan?Tibetan orogen. Annu Rev Earth Planet Sci, 28: 211-280.
McDonough W F and Sun S S. 1995. The composition of the Earth. Chemical Geology, 120: 223-253.
[38]
Miller C, Thfni M, Frank W, Schuster R, Melcher F, Meisel T and Zanetti A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66: 155-172.