全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

构造-流体-成矿作用的分形与混沌动力学

, PP. 378-385

Keywords: 构造-流体-成矿作用,分形结构,混沌动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

系统分析总结了构造活动与裂隙-脉体系统的分形生长,构造活动、流体作用及矿物沉淀之间的非线性反馈作用以及具分形结构与混沌特征的矿物沉淀和矿床的形成过程。以湘西金矿、水口山铅锌金多金属矿田等典型矿床为例,研究发现,水口山铅锌金多金属矿田地层及岩体内的元素含量分布均呈单分形关系,而断裂带内动性较强的Cu、Pb、Zn等成矿元素的元素具有双分形关系,产生了新的元素分布规律,指示断裂活动促进了成矿元素富集,湘西金矿石英脉是通过分形生长向着脉体长度-厚度分维值a值先减小(对应着脉体的膨胀)然后增大(对应着脉体的伸长)的趋势发展演化的,且该矿床各中段金品位空间变化序列均为非线性演化序列,其成矿流体的演化及成矿元素的沉淀富集成矿过程为混沌动力学过程。这些结果表明,构造-流体-成矿作用具有分形结构特征,并具体表现为断裂体系的分形分布,矿床的分形分布,裂隙-脉体系的分形分布和品位分布的分形变化等。成矿元素活化、迁移及沉淀的复杂动力学过程中,构造活动控制了裂隙-脉体系统的分形生长与矿床的就位,且存在于构造活动、流体作用及矿物沉淀之间的非线性反馈作用最终导致了具分形结构与混沌特征的矿物沉淀和矿床的形成。

References

[1]  申维. 2000. 矿化富集动力学模型及其在矿产预测中的应用. 地学前缘, 7(1):189-194.
[2]  谭凯旋. 1999. 砂岩铜矿床的分形分析和资源远景预测. 湘潭矿业学院学报,14(1): 6-10.
[3]  谢焱石, 谭凯旋. 2008. 水口山铅锌金多金属矿田元素分布的分形特征. 东华理工大学学报(自然科学版), 31(1):7-11谢焱石,谭凯旋,陈广浩. 2004a. 湘西沃溪金锑钨矿床分形成矿动力学. 地学前缘,11(1):105-112. 谢焱石,谭凯旋,陈广浩. 2004b. 湘西沃溪金锑钨矿床含金石英脉的分形生长动力学. 地质论评,50(4): 440-447. 谢焱石,谭凯旋,赵志忠. 2002. 湘西金矿含矿石英脉厚度变化的分形和混沌分析. 大地构造与成矿学, 26(1):62-68.
[4]  於崇文. 2000. 地质作用的自组织临界过程动力学――地质系统在混沌边缘分形生长. 地学前缘, 7(1):13-42; 7(2): 555-586.
[5]  於崇文.2006.矿床在混沌边缘分形生长. 合肥:安徽教育出版社.
[6]  张均,周乔伟. 2000. 分形方法在金矿化时空结构分析中的应用.现代地质, 14(1): 56-60.
[7]  张连昌, 屈文军, 赵世华, 姬金生, 杨兴科. 1999. 新疆西滩金矿床金品位分维D值及其意义. 西安工程学院学报, 21(4):11-13.
[8]  周永章, 胡瑞忠. 1995. 低温地球化学的研究与发展. 地球科学进展, 10(5): 442-444.
[9]  周永章, 卢焕章, Guha J. 1994. 地质热场中微量元素迁移的方向性和分维结构. 中国科学(B集),24(12):1308-1313.
[10]  An L J and Sammis C G. 1996. A cellular automaton for the development of crustal shear zones. Tectonophysics, 253(3-4): 247-270.
[11]  Carlson C A. 1991. Spatial distribution of ore deposits. Geology, 19: 111-114.
[12]  Cartwright J A, Trudgill B D and Mansfield C S. 1995. Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9): 1319-1326.
[13]  Kruhl J H. 1994. Fractals and Dynamics Systems in Geosciences. New York: Springer Verlag:95-104.
[14]  Mandelbrot B B. 1982. Fractal Geometry of Nature. San Francisco: W H Freeman& Co:1-465.
[15]  Richard W H and Byron R B. 2000. Self?ordering and complexity in epizonal mineral deposits. Annu Rev Earth Planet Sci, 28: 668-719.
[16]  Sanderson D J and Zhang X. 1999. Critical stress localization of flow associated with deformation of well?fractured rock masses, with implications for mineral deposits // Mccaffret K J W, Lonergan L and Wilkinson J J (eds). Fractures, fluid flow and mineralization. Geological Society, London,Special Publications, 155: 69-81.
[17]  Schroeder M. 1990. Fractals,Chaos,Power Laws. New York: Freeman: 429.
[18]  Sibson R H. 1996. Structural permeability of fluid?driven fault?fracture meshes. Journal of Structural Geology, 18: 1031-1042.
[19]  Turcotte D L. 1992. Fractals and Chaos in Geology and Geophysics. Cambridge: Cambridge University Press:1-231. Xie S Y and Bao Z Y. 2004. Fractal and Multifractal Properties of Geochemical Fields. Mathematical Geology, 36(7): 847-864.
[20]  Xie Y S, Chen G H and Tan K X. 2004. Chaotic Analyses for Space Series of Gold Grade. International Journal of Modern Physics B, 18(17-19): 2730-2733.
[21]  Zhang X and Sanderson D J. 1994. Fractal structure and deformation of fractured rock masses // Kruhl S H(ed). Fractals dynamics System in Geoscience. New York: Spring?Verlag: 37-52.
[22]  Zhou Y X, Zhou Y Z, Xie S Y, Cao D Y and Qiu X R. 2008. A grey fuzzy comprehensive model for evaluation of geological structure complexity. Journal of China University of Geosciences (English Version), 19(4): 123-137.
[23]  Zhou Y Z, Chown E H, Tu G Z, Guha J and Lu H Z. 1994. Geochemical migration and resultant distribution patterns of impurity trace elements in source rocks. Mathematical Geology, (4): 419-435.
[24]  何书,杨桥,王家鼎.2008. 黄骅坳陷中区断裂系统分形研究. 大地构造与成矿学, 32(4):455-461.
[25]  金章东. 1998. 江西德兴铜厂斑岩体铜品位的分形结构.矿床地质, 17(4):363-368.
[26]  连长云,苏小四,朴寿成, 严光生. 1995. 中国大陆深断裂系的分形特征.世界地质, 14(3):35-39.
[27]  沈步明,沈远超. 1993. 新疆某金矿的分数维特征及其地质意义. 中国科学(B辑),23(3):297-302.
[28]  孙雄,洪汉净,马宗晋. 1998. 构造应力作用下流体运动的动力学分析-构造流体动力学.地球学报,19(3):150-157.
[29]  Cello G. 1997. Fractal analysis of a Quaternary fault array in the central Apennines, Italy. Journal of Structural Geology. 19(7): 945-953.
[30]  Cheng Q. 2008. Non-linear theory and power?law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40: 503-532. DOI 10.1007/s 11004-008-9172-6.
[31]  Cox S F. 1995. Faulting process at high fluid pressure: An example of fault?valve behavior from the Wattle Gully Fault, Victoria, Australia. Journal of Geophysical Research, 100: 841-859.
[32]  Cox S F. 1999. Deformational controls on the dynamics of fluid flow in mesothermal gold systems // Mccaffrey K J W, Lonergan L and Wilkinson J J(eds). Fractures, fluid flow and mineralization. Geological Society, London, Special Publications, 155: 123-140.
[33]  Curewitz D and Karson J A. 1997. Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. J Volconal Geotherm Res, 79: 149-168. Ge S and Garven G. 1992. Hydromechanical modeling of tectonically?driven groundwater flow with application to the Arkoma foreland basin. Journal of Geophysical Research, 97: 9119-9144.
[34]  Henley R W and Hoffman C F. 1987. Gold: Sources to resources. PACRIM, Aust. Inst. Mining Metall: 159-167.
[35]  Holness M B. 1997. Deformation?enhanced Fluid Transport in the Earth’s Crust and Mantle. London: Chapman & Hall:352.
[36]  Johnston J D and McCaffrey K J. 1996. Fractal geometries of vein systems and the variation of scaling relationships with mechanism. Journal of Structural Geology, 18: 349-358.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133