全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

鄂尔多斯地块北部中、新生代玄武岩地球化学特征及其地质意义

, PP. 92-104

Keywords: 玄武岩,地球化学,岩石圈,伸展减薄作用,鄂尔多斯地块

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过对分布于鄂尔多斯地块北部杭锦旗与和林格尔玄武岩地球化学特征的研究,探讨了该区中、新生代岩浆源区的组成、变化及其所反映的地质意义。杭锦旗与和林格尔分别有早白垩世(Ar?Ar年龄为126.2Ma)和晚中新世(Ar?Ar年龄为6.4Ma)玄武岩分布。杭锦旗早白垩世玄武岩的SiO2(46.93%~47.93%)较低而碱含量较高(K2O+Na2O为5.75%~6.21%),组合指数σ为6.7~8.0,K2O>(Na2O-2),属于碱性系列的钾质粗面玄武岩;其Mg#值为32.4~32.8,Ni、Cr含量低于20μg/g,反映玄武岩浆形成后经历过橄榄石和单斜辉石分离结晶等后期演化作用;其Nb、Ta相对于La亏损,初始87Sr/86Sr为0.7062,εNd(t)为-12.25,反映岩浆源区主要为富集EMI型地幔。和林格尔晚中新世玄武岩为橄榄拉斑玄武岩,其组合指数σ为2.1~2.8,Mg#值变化于46.7~52.4,Ni含量变化于111.1~125.8μg/g,Cr为123~178μg/g,Mg#值和Ni、Cr含量的变化反映岩浆原生程度随时间变新有所增大;其Nb、Ta相对富集,具有相似于OIB的微量元素特征,但仍表现相对富集的Sr?Nd同位素性质,初始87Sr/86Sr比值变化于0.7051~0.7053,εNd(t)为-1.91~-0.74,推测为软流圈与EMI型岩石圈地幔相互作用的产物。杭锦旗与和林格尔玄武岩的207Pb/204Pb比值都较低,△207/204为3.6~6.5,△208/204>60,均具EMI型Dupal异常。玄武岩地球化学特征进一步表明,华北克拉通西部的鄂尔多斯地块所处的岩石圈自早白垩世以来发生过较小规模的伸展减薄作用,但其伸展减薄和被改造的程度远弱于华北东部。

References

[1]  刘玲,陈斌,刘安坤.2009.北太行紫荆关基性岩体的成因:岩石学和地球化学证据. 地球科学,34(1):165-178.
[2]  肖媛媛,任战利,秦江锋,曾震. 2007. 山西临县紫金山碱性杂岩LA?ICP MS锆石U?Pb年龄、地球化学特征及其地质意义. 地质论评,53(5):656-663.
[3]  徐黎明,周立发,张义楷,党?. 2006. 鄂尔多斯盆地构造应力场特征及其构造背景. 大地构造与成矿学,30(4):455-462.
[4]  徐义刚. 2004. 华北岩石圈减薄的时空不均一特征. 高校地质学报,10(3):324-331.
[5]  徐义刚. 2006a. 太行山重力梯度带的形成与华北岩石圈减薄的时空差异性有关. 地球科学,31(1):14-22.
[6]  徐义刚. 2006b. 用玄武岩组成反演中-新生代华北岩石圈的演化. 地学前缘,13(2):93-104.
[7]  薛祥煦,张云翔,岳乐平. 2006. 从哺乳动物化石看中国黄土高原红黏土-黄土系列的气候环境及演变。. 中国科学(D 辑),36(4): 359-369.
[8]  岳乐平, 邓涛, 张云翔, 王建其, 张春, 杨利荣, Heller F. 2004. 保德阶层型剖面磁性地层学研究. 地层学杂志, 28 (1) : 48- 51, 63.
[9]  张文慧,韩宝福,杜蔚,刘志强. 2005. 内蒙古集宁新生代玄武岩的地幔源区特征:元素及Sr?Nd?Pb同位素地球化学证据. 岩石学报,21(6):1569-1582张文慧,韩宝福. 2006. 内蒙古集宁新生代玄武岩的K?Ar年代学和地球化学及其深部动力学意义. 岩石学报, 22(6):1597-1603.
[10]  张岳桥,廖昌珍,施炜,胡博. 2006. 鄂尔多斯盆地周边地带新构造演化及其区域动力学背景. 高校地质学报,12(3):285-297.
[11]  张云翔,岳乐平,曹红霞. 2001. 黄河中游新近纪三趾马动物群生态序列. 科学通报,46(14):1196-1199.
[12]  赵红格,刘池洋,翁望飞,桂小军,岳乐平,王建强,梁美艳. 2007. 新近纪鄂尔多斯盆地东西部的构造反转及其意义. 石油学报,28(6):6-11.
[13]  郑建平,路凤香,O''REILLY S Y. 1999. 华北地台东部古生代与新生代岩石圈地幔特征及其演化. 地质学报, 73(1):47-56.
[14]  周新华. 2006. 中国东部中、新生代岩石圈转型与减薄研究若干问题. 地学前缘, 13(2):50-64.
[15]  朱介寿. 2007. 欧亚大陆及边缘海岩石圈的结构特性. 地学前缘,14(3):1-20.
[16]  邹和平,张珂,李刚. 2008. 鄂尔多斯地块早白垩世构造-热事件:杭锦旗玄武岩的Ar?Ar年代学证据. 大地构造与成矿学,32(3):360-364.
[17]  Barry T L, Sanders A D and Kempton P D. 2003. Petrogenesis of Cenozoic basalts from Mongolia: Asthenospheric versus metasomatized lithospheric mantle sources. Journal of Petrology, 44: 55-91.
[18]  Hofmann A W, Jochum K P, Seufert M and White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet Sci Lett, 79: 33-45.
[19]  Kushiro I. 2001. Partial melting experiments on peridotite and origin of mid?ocean ridge basalt . Ann Rev Earth Planet Sci, 29: 71-107.
[20]  Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B and IUGS Subcommission on the Systematics of Igneous Rocks. 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali?Silica Diagram. J Petrology, 27: 745-750.
[21]  McDonough W F.1990. Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett, 101: 1-18.
[22]  Menzies M A, Fan W M and Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere Sino?Korean Craton, China∥Pritchard H M, Alabaster T, Harris N B W and Neary C R (eds). Magmatic Processes and Plate Tectonics. Geological Society of London, Special Publications, 76: 71-81.
[23]  Niu Y, Hara M J O and Pearce J A. 2003. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: A petrologic perspective. Journal of Petrology, 4: 851-866Sun S?S and McDonough W F. 1989. Chemical and isotope systematics of oceanic basalts: Implication for mantle composition and processes∥Saunders A D and Norry M J (eds). Magmatism in Ocean Basins. Geological Society of London, Special Publications, 42: 315-345.
[24]  Song Y, Frey Frederick A and Zhi X C. 1990. Isotopic characteristics of Hannuoba basalts, eastern China: Implications for their petrogensis and the composition of subcontinental mantle. Chemical Geology, 88: 38-52.
[25]  Xu Y G, Chung S L, Ma J L and Shi L B. 2004. Constrasting Cenozoic lithospheric evolution and architecture in the western and eastern Sino?Korean Craton: Constraints from geochemistry of basalts and mantle xenoliths. The Journal of Geology, 112 (5): 593-605.
[26]  Zhang H F, Sun M, Zhou M F, Fan W M, Zhou X H and Zhai M G. 2004. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: Evidence from Sr?Nd?Pb isotopic systematics of mafic igneous rocks. Geological Magazine, 141 (1): 55-62.
[27]  Zhang Y, Ma Y and Yang N. 2003. Cenozoic extensional stress evolution in North China. Journal of Geodynamics, 36: 591-613.
[28]  陈国达主编. 1994. 亚洲陆海大地构造图(1∶800万). 北京:科学出版社.
[29]  范蔚茗,郭锋. 2005. 华北地区晚中生代镁铁质岩浆作用及其地球动力学背景. 大地构造与成矿学,29(1):44-55.
[30]  刘池洋,赵红格,桂小军,岳乐平,赵俊峰,王建强. 2006. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应. 地质学报,80(5):617-637.
[31]  刘从强,解广轰,增田彰正.1995. 中国东部新生代玄武岩的地球化学(II):Sr、Nd、Pb同位素组成地球化学. 地球化学,24(3):203-214.
[32]  刘若新,陈文寄,孙建中,李大明. 1992.中国新生代火山岩的K?Ar年代与构造环境. 见: 刘若新(主编), 中国新生代火山岩年代学与地球化学. 北京: 地震出版社, 1-43.
[33]  刘颖,刘海臣,李献华.1996. 用ICP?MS准确测定岩石样品中的40余种微量元素. 地球化学,25(6): 552-558.
[34]  罗修泉, 陈启桐. 1990. 内蒙古新生代玄武岩年代学初步研究. 岩石矿物学杂志, 9(1):37-46.
[35]  马金龙,徐义刚. 2004. 河北阳原和山西大同新生代玄武岩的岩石地球化学特征:华北克拉通西部深部地质过程初探. 地球化学,33(1):75-88.
[36]  马金龙,徐义刚. 2006. 河北阳原幔源包体的Sr?Nd 同位素特征指示华北克拉通中部存在EMI 型古老富集地幔. 科学通报,51(10):1190-1196潘爱芳,赫英,黎荣剑,席先武. 2005. 鄂尔多斯盆地基底断裂与能源矿产成矿的关系. 大地构造与成矿学,29(4):459-464. 强小科,安芷生,常宏. 2003. 佳县红粘土堆积序列频率磁化率的古气候意义. 海洋地质与第四纪地质, 23(3):91-96.
[37]  邱瑞照,邓晋福,周肃,李金发,肖庆辉,吴宗絮,刘翠. 2004. 华北地区岩石圈类型:地质与地球物理证据. 中国科学(B辑),34(8):698-711.
[38]  邵济安,李献华,张履桥,牟保磊,刘玉琳. 2001. 南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约. 地球化学,30(6):517-524.
[39]  邵济安,张履桥. 2002. 华北北部中生代岩墙群. 岩石学报,18(3):312-318.
[40]  Basu A R, Wang J W and Huang W K. 1991. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic?type mantle reservoirs. Earth Planet Sci Lett, 105:149-169.
[41]  Chen B, John B M and Zhai M G. 2003. Sr?Nd isotopic characteristics of the Mesozonic magmatism in the Taihang?Yanshan orogen NCC, and implications for Archean lithosphere thinning. J Geol Sco, 160: 963-970. Chen B, John B M, Arakawa Y and Zhai M G. 2004. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen, North China Craton: Elemental and Sr?Nd?Pb isotopic constraints. Contrib Mineral Petrol, 148: 489-501Depaolo D J and Daley E E. 2002. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 69: 157-185.
[42]  Fan W M and Menzies M A. 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. , 16 (2): 171-180.
[43]  Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D and Menzies M A. 2000. On and off the North China Craton: Where is the Archaean keel? Journal of Petrology, 41(7): 933-950.
[44]  Falloon T J, Green D H and Harton C J. 1988. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. Journal of Petrology, 29 : 1257-1282.
[45]  Griffin W L, Zhang A D, O''Reilly S Y and Ryan C G.1998. Phanerozoic evolution of the lithosphere beneath the Sino?Korean Craton∥FLOWER M, CHUNG S L and LO C H(eds). Mantle dynamics and plate interactions in east Asia. Washington DC: Am Geophys Union Geodyn Ser, 27: 107-126.
[46]  Han Baofu, Wang Shiguang and Kagami H. 1999. Trace element and and Nd?Sr isotope constraints on origin of the Chifeng flood basalts, North China. Chemical Geology, 155: 187-199.
[47]  Hart S R. 1984. A large?scale isotope anomaly in the southern hemisphere mantle. Nature, 309: 753-757.
[48]  Hart S R. 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth Planet Sci Lett, 90: 273-296.
[49]  Hart W K, Gabriel W G, Walter R C and Mertzman S A. 1989. Basaltic volcanism in Ethiopia: Constraints on continental rifting and mantle interactions. J Geophys Res, 94 (B6): 7731-7748.
[50]  Tatsumoto M, Basu A R, Huang W K, Wang J W and Xie G H. 1992. Sr, Nd and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: Enriched components EMI and EMII in subcontinental lithosphere. Earth Planet Sci Lett, 113:107-128.
[51]  Taylor S R and Gorton M P. 1977. Geochemical application of spark source mass spectrography?3, element sensitivity, precision and accuracy. Geochim Cosmochim Acta, 41:1375-1380.
[52]  Wang J H, Yin A, Harrison T M, Grove M, Zhang Y Q and Xie G H. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo?Asian collision zone. Earth Planet Sci Lett, 188: 122-133.
[53]  Weaver B L. 1991. The origin of ocean island?end?member compositions: Trace element and isotopic constraints. Earth Planet Sci Lett, 104: 381-397.
[54]  Wilson M. 1989. Igneous Petrogenesis: A Global Tectonic Approach. London: the Academic Division of Unwin Hyman Ltd, 267-320.
[55]  Wu F Y, Lin J Q, Wildes S A, Zhang X O and Yang J H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233:103-119.
[56]  Xu Y G. 2001. Thermo?tectonic destruction of the Archaean lithospheric keel beneath the Sino?Korean Craton in China: Evidence, timing and mechanism. Physics and Chemistry of the Earth Part A?Solid Earth and Geodesy, 26 (9-10): 747-757.
[57]  Zhi X C, Song Y and Fray F A. 1990. Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology, 88:1-33.
[58]  Zindler A and Hart S A. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 2493-2571.
[59]  陈斌, 刘超群, 田伟. 2006. 太行山中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据. 地学前缘,13 (2):140-147.
[60]  陈斌,田伟,翟明国,荒川洋二. 2005. 太行山和华北其它地区中生代岩浆作用的锆石U?Pb年代学和地球化学特征及其岩浆成因和地球动力学意义. 岩石学报,21(1):13-24.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133