全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制

, PP. 628-630

Keywords: 大洋俯冲带,地震波各向异性,剪切波分裂,橄榄石组构,海沟迁移,蛇纹岩化,地幔楔

Full-Text   Cite this paper   Add to My Lib

Abstract:

大洋板块俯冲带是许多重要地质作用(例如脱水、部分熔融、岩浆和地震活动)发生的场所。对位于俯冲带之上的地震台站所检测到的不同剪切波的数据解析,可以获得源于上覆板块、地幔楔、俯冲板块和板下地幔的地震波各向异性的关键信息。本文系统总结了世界各地大洋俯冲带的剪切波分裂样式,对目前国际上流行的大洋俯冲带的地震波各向异性的主要成因模式(例如地幔楔拐角流、与海沟迁移有关的平行海沟的地幔流、橄榄石位错蠕变形成各类组构以及蛇纹石化的影响等)进行了较为详尽地评述。由橄榄石(010)[100]、(010)[001]、(100)[001]、{0kl}[100]、(001)[100]和{110}[001]位错蠕变形成的晶格优选定向(LPO)分别称之为A型、B型、C型、D型、E型和F型组构,其中A型、D型和E型组构总是导致剪切快波的偏振方向(?)平行于地幔流的方向,而B型组构则导致?垂直于地幔流的方向。C型组构虽然也能使?平行于地幔流方向,但快慢波之间的延迟时间(δt)则不如同等条件下A型组构形成的那么大。F型组构导致剪切波在垂直于地幔流动面的方向上传播时几乎不发生分裂。叶蛇纹石是俯冲板块地幔和地幔楔中最主要的含水矿物,具极低的流变强度、很低的地震波速和很大的弹性各向异性。蛇纹石化程度越高,变形地幔岩的各向异性就越大,则弧前地幔楔的剪切波分裂愈强。只要蛇纹石的含量超过10%~20%,则变形地幔岩的地震波各向异性特征将由蛇纹石的LPO主导。地幔楔的剪切波分裂特征主要取决于其蛇纹石化程度与俯冲角度,陡倾的俯冲和高程度的蛇纹石化有利于形成平行于海沟的?。

References

[1]  嵇少丞, 王茜, 许志琴. 2008. 华北克拉通破坏与岩石圈减薄. 地质学报, 82(2): 174-193.
[2]  Abt D L, Fischer K M, Abers G A, Protti M, González V and Strauch W. 2010. Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting. J Geophys Res, 115, B06316, doi:10.1029/2009JB006710.
[3]  Abt D L, Fischer K M, Abers G A, Strauch W, Protti M and González V. 2009. Shear wave anisotropy beneath Nicaragua and Costa Rica: Implications for flow in the mantle wedge. Geochem Geophys Geosyst, Q05S15, doi:10.1029/2009GC002375.
[4]  Ando M, Ishikawa Y and Yamazaki F. 1983. Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J Geophys Res, 88(B7): 5850-5864.
[5]  Audoine E, Savage M K and Gledhill K. 2004. Anisotropic structure under a back arc spreading region, the Taupo Volcanic Zone, New Zealand. J Geophys Res, 109, B11305, doi:10.1029/2003JB002932.
[6]  Becker T W and Faccenna C. 2009. A review of the role of subduction dynamics for regional and global plate motions // Lallemand S and Funiciello F. Subduction Zone Geodynamics. Berlin: Springer: 3-34. Bezacier L, Reynard B, Bass J D, Sanchez?Valle C and Van de Moortèle B. 2010. Elasticity of antigorite, seismic detection of serpentinites and anisotropy in subduction zones. Earth Planet Sci Lett, 289: 198-208.
[7]  Hess H H. 1964. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203: 629-631.
[8]  Heuret A and Lallemand S. 2005. Plate motions, slab dynamics and back?arc deformation. Phys Earth Planet Inter, 149: 31-51.
[9]  Hilairet N, Reynard B, Wang Y, Daniel I, Merkel S and Nishiyama N. 2007. High?pressure creep of serpentine, interseismic deformation and initiation of subduction. Science, 318: 1910-1913.
[10]  Hirauchi K I and Yamaguchi H. 2007. Unique deformation processes involving the recrystallization of chrysotile within serpentinite: Implications for aseismic slip events within subduction zones. Terra Nova, 19(6): 454-461.
[11]  Hirauchi K I, Katayama I, Uehara S, Miyahara M and Takai Y. 2010. Inhibition of subduction thrust earthquakes by low?temperature plastic flow in serpentine. Earth Planet Sci Lett, 295: 349-57.
[12]  Hirth G and Kohlstedt D L. 1996. Water in the oceanic upper mantle―Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett, 144: 93-108.
[13]  Hoernle K, Abt D L, Fischer K M, Nichols H, Hauff F and Abers G P. 2008. Geochemical and geophysical evidence for arc?parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature, 451: 1094-1098.
[14]  Houseman G A and Gubbins D. 1997. Deformation of subducted oceanic lithosphere. Geophysical Journal International, 131: 535-551.
[15]  Hsui A T, Tang X M and Toksoz M N. 1990. On the dip angle of subducting plates. Tectonophpsics, 179: 163-175.
[16]  Huang Z, Zhao D and Wang L. 2011. Shear wave anisotropy in the crust, mantle wedge and subducting Pacific slab under northeast Japan. Geochem Geophys Geosyst, 12, Q01002, doi:10.1029/2010GC003343.
[17]  Hyndman R D and Peacock S M. 2003. Serpentinization of the forearc mantle. Earth Planet Sci Lett, 212: 417-432.
[18]  Ji S C. 2008. Deformation Mechanisms, Rheology and Seismic Properties of Rocks. Beijing: Geological Publication House: 539.
[19]  Ji S C and Salisbury M. 1993. Shear?wave velocities, anisotropy and splitting in the high grade mylonites. Tectonophysics, 221: 453-473.
[20]  Ji S C and Zhao P. 1994. Layered rheological structure of subducting oceanic lithosphere. Earth Planet Sci Lett, 124: 75-94.
[21]  Ji S C, Wang Q and Xu Z Q. 2007. Reply to the comment of S. Karato on "Petrofabrics and seismic properties of garnet peridotites from the USP Sulu Terrane (China)" by Xu et al. [Tectonophysics 421 (2006): 111-. Tectonophysics, 429: 291-296.
[22]  Ji S C, Wang Q, Xia B and Marcotte D. 2004. Mechanical properties of multiphase materials and rocks: A simple phenomenological approach using generalized means. J Struct Geol, 26: 1377-1390.
[23]  Ji S C, Zhao X, Francis D. 1994. Calibration of shear?wave splitting in the subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska. Tectonophysics, 239: 1-27.
[24]  Jiao W, Silver P G, Fei Y and Prewitt C T. 2000. Do intermediate? and deep?focus earthquakes occur on preexisting weak zones? An examination of Tonga subduction zone. J Geophys Res, 105: 28125-28138.
[25]  Jung H and Karato S. 2001. Water?induced fabric transitions in olivine. Science, 293: 1460-1463.
[26]  Jung H, Katayama I, Jiang Z, Hiraga T and Karato S. 2006. Effect of water and stress on the lattice?preferred orientaion of olivine. Tectonophysics, 421: 1-22.
[27]  Jung H, Mo W and Green H W. 2009. Upper mantle seismic anisotropy resulting from pressure?induced slip transition in olivine. Nat Geosci, 2: 73-77.
[28]  Kamiya S and Kobayashi Y. 2000. Seismological evidence for the existence of serpentinized wedge mantle. Geophys Res Lett, 27: 819-822.
[29]  Karato S. 2002. The Dynamics Structure of the Deep Earth: An Interdisciplinary Approach. New Jersey: Princeton and Oxford: 241.
[30]  Karato S and Wu P. 1993. Rheology of the upper mantle: A synthesis. Science, 260: 771-778.
[31]  Karato S, Jung H, Katayama I and Skemer P. 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annu Rev Earth Planet Sci, 36: 59-95.
[32]  Katayama I and Karato S. 2006. Effects of temperature on the B? to C?type fabric transition in olivine. Phys Earth Planet Int, 157: 33-45.
[33]  Katayama I, Hirauchi K I, Michibayashi K and Ando J I. 2009. Trench?parallel anisotorpy produced by serpentine deformation in the hydrated mantle wedge. Nature, 461: 1114-1118.
[34]  Katayama I, Jung H and Karato S. 2004. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, 32: 1045-1048.
[35]  Kendall J M. 1994. Teleseismic arrivals at a mid?ocean ridge: Effects of mantle melt and anisotropy. Geophys Res Lett, 21: 301-304.
[36]  Kern H, Liu B and Popp T. 1997. Relation between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolite. J Geophys Res, 102: 3051-3065.
[37]  Kincaid C and Griffiths R W. 2003. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature, 425: 58-62.
[38]  Kneller E A, Long M D and van Keken P E. 2008. Olivine fabric transitions and shear?wave anisotropy in the Ryukyu subduction system. Earth Planet Sci Lett, 268: 268-282.
[39]  Kneller E A, van Keken P E, Karato S and Park J. 2005. B?type fabric in the mantle wedge: Insights from high?resolution non?Newtonian subduction zone models. Earth Planet Sci Lett, 237: 781- 797.
[40]  Kneller E A, van Keken P E, Katayama I and Karato S. 2007. Stress, strain and B?type olivine fabric in the fore?arc mantle: Sensitivity tests using high?resolution steady?state subduction zone models. J Geophys Res, 112, doi:10.1029/ 2006JB004544.
[41]  Kumazawa M and Anderson O L. 1969. Elastic moduli, pressure derivatives and temperature derivatives of single?crystal olivine and single?crystal forsterite. J Geophys Res, 74: 5961-5972.
[42]  Levin V, Droznin D, Park J and Gordeev E. 2004. Detailed mapping of seismic anisotropy with local shear waves in southeastern Kamchatka. Geophys J Int, 158: 1009-1023.
[43]  Nakajima J and Hasegawa A. 2004. Shear?wave polarization anisotropy and subduction?induced flow in the mantle wedge of northern Japan. Earth Planet Sci Lett, 225: 365-377.
[44]  Nicolas A and Christensen N I. 1987. Formation of anisotropy in upper mantle peridotites―A review // Fuchs K and Froideoaux C. Composition, Structure and Dynamics of the Lithosphere?Asthenosphere System. Washington D C: AGU, 16: 111-123.
[45]  Okaya D, Christensen N I, Stanley D and Stern T. 1995. Crustal anisotropy in the vicinity of the Alpine Fault zone, South Island, New Zealand. J Geol Geophys, 38: 579- 583.
[46]  Peyton V V, Levin J, Park M, Brandon M, Lees J, Gordeev E and Ozerov A. 2001. Mantle flow at a slab edge: Seismic anisotropy in the Kamchatka region. Geophys Res Lett, 28: 379- 382.
[47]  Raterron P, Wu Y, Weidner D J and Chen J. 2004. Low?temperature olivine rheology at high pressure. Phys Earth Planet Inter, 145: 149-159.
[48]  Ribe N M. 1989. Seismic anisotropy and mantle flow. J Geophys Res, 94: 4123-4223.
[49]  Ringwood A. 1991. Phase transformations and their bearings on the constitution and dynamics of the mantle. Geochem Cosmochem Acta, 55: 2083-2110.
[50]  Russo R M. 2009. Subducted oceanic asthenosphere and upper mantle flow beneath the Juan de Fuca slab. Lithosphere, 1: 195-205.
[51]  Russo R M and Silver P G. 1994. Trench?parallel flow beneath the Nazca plate from seismic anisotropy. Science, 263: 1105-1111.
[52]  Schmidt M W and Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361-379.
[53]  Seno T, Zhao D, Kobayashi Y and Nakamura M. 2001. Dehydration of serpentinized slab mantle: Seismic evidence from southwest Japan. Earth Planets Space, 53: 861-871.
[54]  Sherrington H F, Zandt G and Frederiksen A. 2004. Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters. J Geophys Res, 109, B02312, doi:10.1029/2002JB002345.
[55]  Shih X R, Schneider J F and Meyer R P. 1991. Polarities of P and S waves and shear wave splitting observed from the Bucaramanga nest, Colombia. J Geophys Res, 96 (B7): 12069-12082.
[56]  Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu Rev Earth Planet Sci, 24: 385-432.
[57]  Backus G E. 1965. Possible forms of seismic anisotropy of the uppermost mantle under oceans. J Geophys Res, 70: 3429-3429.
[58]  Bostock B C, Hyndman R D, Rondenay S and Peacock S M. 2002. An inverted continental Moho and the serpentinization of the forearc mantle. Nature, 417: 536-538.
[59]  Boudier F, Baronnet A and Mainprice D. 2009. Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction?related antigorite. J Petrol, 51: 495-512.
[60]  Bowman J R and Ando M. 1987. Shear?wave splitting in the upper?mantle wedge above the Tonga subduction zone. Geophys J R Astron Soc, 88: 25-41.
[61]  Brocher T M, Parsons T, Trehu A M, Snelson C M and Fisher M A. 2003. Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin. Geology, 31: 267-270.
[62]  Brodie K H and Rutter E H. 1987. The role of transiently fine?grained reaction products in syntectonic metamorphism: Natural and experimental examples. Can J Earth Sci, 24: 556-564.
[63]  Buttles J and Olson P. 1998. A laboratory model of subduction zone anisotropy. Earth Planet Sci Lett, 164: 245-262.
[64]  Carter N L and Ave Lallemant H G. 1970. High temperature flow of dunite and peridotite. Geol Soc Amer Bull, 81: 2181-2202.
[65]  Chenak L J and Hirth G. 2010. Deformation of antigorite serpentinite at high temperature and pressure. Earth Planet Sci Lett, 296: 23-33.
[66]  Christensen D H and Abers G A. 2010. Seismic anisotropy under central Alaska from SKS splitting observations. J Geophys Res, 115, B04315, doi:10.1029/2009JB006712.
[67]  Christensen N I. 2004. Serpentine, peridotites and seismology. Int Geol Rev, 46: 795-816.
[68]  Couvy H, Frost D J, Heidelbach F, Nyilas K, Ungar T and Mackwell S. 2004. Shear deformation experiments of forsterite at 11 GPa?1400 ℃ in the multianvil apparatus. Eur J Mineral, 16: 877-889.
[69]  Crampin S and Booth D C. 1985. Shear?wave polarizations near the North Anatolian fault, II, Interpretation in terms of crackinduced anisotropy. Geophys J R Astron Soc, 83: 75-92.
[70]  Currie C A, Cassidy J F, Hyndman R and Bostock M G. 2004. Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton. Geophys J Int, 157: 341-353.
[71]  DeShon H R and Schwartz S Y. 2004. Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophys Res Lett, 31, doi:10.1029/2004GL021179.
[72]  Dewandel B, Boudier F, Kern H, Warsic W and Mainprice D. 2003. Seismic wave velocity and anisotropy of serpentinized peridotite in the Oman ophiolite. Tectonophys, 370: 77-94.
[73]  Escartin J, Hirth G and Evans B W. 2001. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. Geology, 29 (11): 1023-1026.
[74]  Evans B W. 1977. Metamorphism of alpine peridotites and serpentinites. Annu Rev Earth Planet Sci, 5: 397-448.
[75]  Evans B W. 2004. The serpentinite multisystem revisited: Chrysotile is metastable. Int Geol Rev, 46: 479-506.
[76]  Faccenda M, Burlini L, Gerya T V and Mainprice D. 2008. Fault?induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455: 1097-1101.
[77]  Fischer K M and Wiens D A. 1996. The depth distribution of mantle anisotropy beneath the Tonga subduction zone. Earth Planet Sci Lett, 142: 253-260.
[78]  Fischer K M, Parmentier E M, Stine A R and Wolf E R. 2000. Modeling anisotropy and plate?driven flow in the Tonga subduction zone back arc. J Geophys Res, 105: 16181-16191.
[79]  Fouch M J and Fischer K M. 1996. Mantle anisotropy beneath northwest Pacific subduction zones. J Geophys Res, 101: 15987-16002.
[80]  Frederiksen A W, Folsom H and Zandt G. 2003. Neighbourhood inversion of teleseismic Ps conversions for anisotropy and layer dip. Geophys J Int, 155: 200-212.
[81]  Fukao Y. 1984. Evidence from core?reflected shear waves for anisotropy in the earth′s mantle. Nature, 309: 695-698.
[82]  Funiciello F, Faccenna C, Heuret A, Lallemand S, Di Giuseppe E and Becker T W. 2008. Trench migration, net rotation and slab?mantle coupling. Earth Planet Sci Lett, 271: 233-240.
[83]  Funiciello F, Moroni M, Piromallo C, Faccenna C, Cenedese A and Bui H A. 2006. Mapping mantle flow during retreating subduction: Laboratory models analyzed by feature tracking. J Geophys Res, 111, B03402, doi:10.1029/2005JB003792.
[84]  Godfrey N J, Christensen N I and Okaya D A. 2000. Anisotropy of schists: Contributions of crustal anisotropy to active source seismic experiments and shear wave splitting observations. J Geophys Res, 105(B12): 27991-28007.
[85]  Graeber F M and Asch G. 1999. Three dimensional models of P?wave velocity and P?to?S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data. J Geophys Res, 104: 20237-20256 Grant K J, Kohn S C and Brooker R A. 2007. The partitioning of water between olivine, orthopyroxene and melt synthesised in the system albite?forsterite?H2O. Earth Planet Sci Lett, 260: 227-241 Gripp A E and Gordon R G. 2002. Young tracks of hot spot and current plate velocities. Geophys J Int, 150: 321-361.
[86]  Hammond J O S, Wookey J, Kaneshima S, Inoue H, Yamashina T and Harjadi P. 2010. Systematic variation in anisotropy beneath the mantle wedge in the Java?Sumatra subduction system from shear?wave splitting. Phys Earth Planet Inter, 178: 189-201.
[87]  Herquel G, Wittlinger G and Guilbert J. 1995. Anisotropy and crustal thickness of northern?Tibet: New constraints for tectonic modelling. Geophys Res Lett, 22(14): 1925-1928.
[88]  Ji S C, Rondenay S, Mareschal M and Senechal G. 1996. Obliquity between seismic and electrical anisotropies as an indicator of movement sense for ductile mantle shear zones. Geology, 24: 1033-1036.
[89]  Ji S C, Wang Q and Xia B. 2002. Handbook of seismic properties of minerals, rocks and ores. Montreal: Polytechnic International Press: 630. Ji S C, Wang Q and Salisbury M H. 2009. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson′s ratio. Tectonophysics, 463: 15-30.
[90]  Karato S. 1986. Does partial melting reduce the creep strength of the upper mantle? Nature, 319: 309-310.
[91]  Li C, van der Hilst R D, Engdahl E R and Burdick S. 2008. A new global model for P wave speed variations in Earth′s mantle. Geochem Geophys Geosyst, 9, Q05018, doi:10.1029/2007GC001806.
[92]  Li L, Raterron P, Weidner D and Chen J. 2003a. Olivine flow mechanisms at 8 GPa. Phys Earth Planet Inter, 138: 113-129.
[93]  Li L, Weidner D, Raterron P, Chen J and Vaughan M. 2004. Stress measurements of deforming olivine at high pressure. Phys Earth Planet Inter, 143: 357-367.
[94]  Li T F, Yang J S and Zhang R Y. 2003b. Peridotite from the pre?pilot hole (PP1) of Chinese continental scientific drilling project and its bearing on depleted and metasomatic upper mantle. Acta Geol Sin, 77: 492-509.
[95]  Long M D and Becker T W. 2010. Mantle dynamics and seismic anisotropy. Earth Planet Sci Lett, 297: 341-354.
[96]  Long M D and Silver P G. 2008. The subduction zone flow field from seismic anisotropy: A global view. Science, 319: 315-318.
[97]  Long M D and Silver P G. 2009. Mantle flow in subduction systems: The subslab flow field and implications for mantle dynamics. J Geophys Res, 114, B10312, doi:10.1029/ 2008JB006200.
[98]  Long M D and van der Hilst R D. 2005. Upper mantle anisotropy beneath Japan from shear wave splitting. Phys Earth Planet Inter, 151: 206-222.
[99]  Long M D and van der Hilst R D. 2006. Shear wave splitting from local events beneath the Ryukyu arc: Trench?parallel anisotropy in the mantle wedge. Phys Earth Planet Inter, 155: 300-312.
[100]  Mainprice D. 2007. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective // Schubert G. Treatise on Geophysics, 2: 437-492.
[101]  Mainprice D and Silver P. 1993. Interpretation of SKS?waves using samples from the sub?continental lithosphere. Phys Earth Planet Inter, 78: 257-280.
[102]  Marson?Pidgeon K M, Savage K, Gledhill K and Stuart G. 1999. Seismic anisotropy beneath the lower half of the North Island, New Zealand. J Geophys Res, 104: 20277-20286.
[103]  McKenzie D. 1979. Finite deformation during fluid flow. Geophys J, 58: 689-715. McNamara D E, Owens T J, Silver P G and Wu F. 1994. Shear wave anisotropy beneath the Tibetan Plateau. J Geophys Res, 99 (B7): 13655-13665.
[104]  Michibayashi K, Tasaka M, Ohara Y, Ishii T, Okamoto A and Fryer P. 2007. Variable microstructure of peridotite samples from the southern Mariana Trench: Evidence of a complex tectonic evolution. Tectonophysics, 444: 111-118.
[105]  Mizukami T, Wallis S R and Yamamoto J. 2004. Natural example of olivine lattice preferred orientation patterns with a flow?nomal a?axis maximum. Nature, 427: 29-32.
[106]  Moore D E and Lockner D A. 2007. Comparative deformation behavior of minerals in serpentinized ultramafic rock: Application to the slab?mantle interface in subduction zones. Int Geol Rev, 49: 401-415.
[107]  Moore D E, Lockner D A, Summers R, Ma S and Byerlee J D. 1996. Strength of chrysotile?serpentinite gouge under hydrothermal conditions: Can it explain a weak San Andreas fault? Geology, 24: 1041-1044.
[108]  Morgan P J, Hasenclever J, Hort M, Rüpke L and Parmentier E M. 2007. On subducting slab entrainment of buoyant asthenosphere. Terra Nova, 19: 167-173.
[109]  Ozacar A A and Zandt G. 2004. Crustal seismic anisotropy in central Tibet: Implications for deformational style and flow in the crust. Geophys Res Lett, 31, doi:10.1029/2004GL021096. Padron?Navarta J A, Hermann J, Garrido C J, Sánchez?Vizcaíno V L and Gómez?Pugnaire M T. 2010. An experimental investigation of antigorite dehydration in natural silica?enriched serpentinite. Contrib Mineral Petrol, 159: 25-42.
[110]  Piromallo C, Becker T W, Funiciello F and Faccenna C. 2006. Three?dimensional instantaneous mantle flow induced by subduction. Geophys Res Lett, 33, L08304. doi:10.1029/2005GL025390.
[111]  Polet J, Silver P G and Beck S. 2000. Shear wave anisotropy beneath the Andes from the BANJO, SEDA and PISCO experiments. J Geophys Res, 105: 6287-6304.
[112]  Pozgay S H, Wiens D A, Conder J A, Shiobara H and Sugioka H. 2007. Complex mantle flow in the Mariana subduction system: Evidence from shear wave splitting. Geophys J Int, 170: 371-386.
[113]  Pulford A, Savage M and Stern T. 2003. Absent anisotropy: The paradox of the Southern Alps orogen. Geophys Res Lett, 30(20), 2051, doi:10.1029/2003GL017758.
[114]  Ranero C R, Villasenor A, Morgan P J and Weinrebe W. 2005. Relationship between bend?faulting at trenches and intermediate?depth seismicity. Geochem Geophys Geosyst, 6, Q12002, doi:10.1029/2005GC000997.
[115]  Raterron P, Chen J, Li L, Weidner D and Cordier P. 2007. Pressure?induced slip?system transition in forsterite: Single?crystal rheological properties at mantle pressure and temperature. Am Mineral, 92: 1436-1445.
[116]  Salah M K, Seno T and Iidaka T. 2008. Upper mantle anisotropy beneath central and southwest Japan: An insight into subduction?induced mantle flow. J Geodyn, 46: 21-37.
[117]  Saruwatari K, Ji S C, Long C X and Salisbury M H. 2001. Seismic anisotropies of mantle xenoliths and constraints on the upper mantle structures beneath the southern Canadian Cordillera. Tectonophysics, 339: 399-422.
[118]  Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev Geophys, 37: 65-106.
[119]  Schellart W P, Freeman J, Stegman D R, Moresi L and May D. 2007. Evolution and diversity of subduction zones controlled by slab width. Nature, 446: 308-311.
[120]  Skemer P, Katayama I and Karato S. 2006. Deformation fabrics of the Cima di Gagnone Peridotite Massif, Central Alpes, Swizerland: Evidence of deformation under water?rich conditions at low temperatures. Contrib Mineral Petrol, 152: 43-51.
[121]  Smith G P, Wiens D A, Fischer K M, Leroy M D, Webb S C and Hildebrand J A. 2001. A complex pattern of mantle flow in the Lau back?arc. Science, 292: 713-716.
[122]  Stegman D R, Freeman J, Schellart W P, Moresi L and May D. 2006. Influence of trench width on subduction hinge retreat rates in 3?D models of slab rollback. Geochem Geophys Geosyst, 7, Q03012, doi:10.1029/2005GC001056.
[123]  Tackley P J. 2008. Geodynamics: Layer cake or plum pudding? Nat Geosci, 1: 157-158.
[124]  Tasaka M, Michibayashi K and Mainprice D. 2008. B?type olivine fabrics developed in the fore?arc side of the mantle wedge along a subducting slab. Earth Planet Sci Lett, 272: 747-757.
[125]  Ulmer P and Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction?related magmatism. Science, 268: 858-861.
[126]  Van der Hilst R D, Widiyantoro S and Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386: 578-584.
[127]  Vinnik L P, Makeyeva L I and Milev A. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophys J Int, 111: 433-447.
[128]  Wada I, Wang K, He J and Hyndman R D. 2008. Weakening of the subduction interface and its effects on surface heat flow, slab dehydration and mantle wedge serpentinization. J Geophys Res, 113, B04402, doi:10.1029/2007JB005190.
[129]  Wang Q and Ji S C. 2009. Poisson′s ratio of crystalline rocks as a function of hydrostatic confining pressure. J Geophys Res, 114, B09202, doi:10.1029/2008JB006167.
[130]  Wang Q, Ji S C, Salisbury M, Xia B, Pan M B and Xu Z Q. 2005. Shear wave properties and Poisson′s ratios of ultrahigh?pressure metamorphic rocks from the Dabie?Sulu orogenic belt, China: Implications for the crustal composition. J Geophys Res, 110, doi:10.1029/2004JB003435.
[131]  Watanabe T, Kasami H and Ohshima S. 2007. Compressional and shear wave velocities of serpentinized peridotites up to 200MPa. Earth Planets Space, 59 (4): 233-244.
[132]  Wirth E and Long M D. 2010. Frequency?dependent shear wave splitting beneath the Japan and Izu?Bonin subduction zones. Phys Earth Planet Inter, 181: 141-154. Wookey J, Kendall J M and Rumpker G. 2005. Lowermost mantle anisotropy beneath the north Pacific from differential S?ScS splitting. Geophys J Int, 161: 829- 838.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133