全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Paterson高温高压流变仪及其在岩石流变学中的应用

Keywords: 实验岩石变形技术,流变学,大应变简单剪切,构造地质学,地球动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

地球作为一个动态体系,其内部岩石在各种物理化学条件下变形,形成各种地质构造。在过去的几十年里,得益于相关测试分析手段的不断发展,地球材料的流变学研究取得了许多实验突破,加深了人类对地壳和上地幔岩石变形行为的理解。本文对实验岩石变形装置的技术发展做了扼要的回顾,重点介绍了Paterson高温高压流变仪(HPT)。HPT是一台内部加热气体介质高温(可达~1500℃)高压(高达700MPa)三轴变形装置,与固态介质的Griggs装置相比,更能对温度、围压、差应力和应变进行高精度的测量,从而获得高质量的力学数据。选择不同的驱动系统,HPT可以在压缩、拉伸和扭转模式下进行各种类型的测试,如恒定应变速率,蠕变(恒定应力)和松弛实验等。利用该装置上的孔隙流体模块,还可以自动控制孔隙流体压力并测量进出样品孔隙流体的体积,从而测定实验变形过程中样品的体积变化。因此,HPT是研究矿物岩石的力学行为和物理性质的最佳装置。本文还对HPT在解决各种关键的地质与地球物理问题,如多相岩石的流变学和断裂力学、部分熔融的形成和萃取、脆-韧性转变、动态重结晶和晶格优选定向的发育,以及变形岩石的地震波性质等方面的应用进行了简要的总结。中国科学院广州地球化学研究所最近安装的HPT是目前中国唯一的一台同类仪器,为中国引入了地球科学领域的一项新的高技术,必然会对构造地质学和地球动力学实验研究产生积极的作用。

References

[1]  Ji S C, Jiang Z T, Rybacki E, Wirth R, Prior D and Xia B. 2004. Strain softening and microstructural evolution of anorthite aggregates and quartz?anorthite layered composites deformed in torsion. Earth Planet Sci Lett, 222: 377-390.
[2]  Ji S C and Mainprice D. 1987. Experimental deformation of sintered above and below the order?disorder transition. Géodinamica Acta (Paris), 1(2): 113-124.
[3]  Ji S C, Wirth R, Rybacki E and Jiang Z T. 2000. High?temperature plastic deformation of quartz?plagioclase multilayers by layer?normal compression. J Geophys Res, 105(B7): 16651-16664.
[4]  Ji S C and Xia B. 2002. Rheology of polyphase earth materials // Schettini S. Polytechnic International Press: 259.
[5]  Ji S C and Zhao P L. 1993. Flow laws of multiphase rocks calculated from experimental data on the constituent phases. Earth Planet Sci Lett, 117: 181-187.
[6]  Jin Z M, Zhang J, Green H W and Jin S. 2001. Eclogite rheology: Implications for subducted lithosphere. Geology, 29: 667-670.
[7]  Kanagawa K, Cox S F and Zhang S Q. 2000. Effects of dissolution?precipitation processes on the strength and mechanical behavior of quartz gouge at high?temperature hydrothermal conditions. J Geophys Res, 105(B5):11115-11126.
[8]  Karato S I, Dupas?Bruzek C and Rubie D C. 1998. Plastic deformation of silicate spinel under the transition zone conditions of the Earth. Nature, 395: 266-269.
[9]  Karato S I, Paterson M S and Fitz Gerald J D. 1986. Rheology of synthetic olivine aggregates: Influence of grain size and water. J Geophys Res, 91(B8): 8151-8176.
[10]  Karato S I and Rubie D C. 1997. Toward an experimental study of deep mantle rheology: A new multianvil sample assembly for deformation experiments under high pressures and temperatures. J Geophys Res, 102(B9): 20111-20122.
[11]  Karato S I and Weidner D J. 2008. Laboratory studies of the rheological properties of minerals under deep?mantle conditions. Elements, 4: 191-196.
[12]  Koch P S, Christie J M, Ord A and George R P. 1989. Effect of water on the rheology of experimentally deformed quartzite. J Geophys Res, 94(B10): 13975-13996.
[13]  Kohlstedt D L, Evans B and Mackwell S J. 1995. Strength of the lithosphere: Constraints imposed by laboratory experiments. J Geophys Res, 100(B9): 17587-17602.
[14]  Mei S and Kohlstedt D L. 2000b. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res, 105(B9): 21471-21481.
[15]  Milsch H, Heinrich W and Dresen G. 2003. Reaction?induced fluid flow in synthetic quartz?bearing marbles. Contrib Mineral Petrol, 146: 286-296.
[16]  Nicolas A. 1976. Flow in upper?mantle rocks: Some geophysical and geodynamic consequences. Tectonophysics, 32: 93-106.
[17]  Paterson M S and Olgaard D L. 2000. Rock deformation tests to large shear strains in torsion. J Struct Geol, 22: 1341-1358.
[18]  Paterson M S and Wong T F. 2005. Experimental rock deformation―The brittle field. 2nd Edition. Spring?Verlag: 147-163.
[19]  Peselnick L, Nicolas A and Stevenson P R. 1974. Velocity anisotropy in a mantle peridotite from the Ivrea zone: Application to upper mantle anisotropy. J Geophys Res, 79: 1175-1235.
[20]  Pieri M, Kunze K, Burlini L, Stretton I, Olgaard D L, Burg J?P and Wenk H?R. 2001a. Texture development of calcite by deformation and dynamic recrystallization at 1000 K during torsion experiments of marble to large strains. Tectonophysics, 330: 119-140.
[21]  Pieri M, Burlini L, Kunze K, Stretton I and Olgaard D L. 2001b. Rheological and microstructural evolution of Carrara marble with high shear strain: Results from high temperature torsion experiments. J Struct Geol, 23(9): 1393-1413.
[22]  Ramsay J G. 1980. Shear zone geometry: A review. J Struct Geol, 2: 83-99.
[23]  Ramsay J G and Graham R H. 1970. Strain variation in shear belts. Canadian Journal of Earth Sciences, 7: 786-813.
[24]  Renner J, Evans B and Siddiqi G. 2002. Dislocation creep of calcite. J Geophys Res, 107, B122364: 10.1029/2001JB001680.
[25]  Renner J, Siddiqi G and Evans B. 2007. Plastic flow of two?phase marbles. J Geophys Res, 112, B07203: 10.1029/2005JB004134.
[26]  Rutter E H. 1974. The influence of temperature, strain rate and interstitial water in the experimental deformation of calcite rocks. Tectonophysics, 22: 311-334.
[27]  Rutter E H. 1995. Experimental study of the influence of stress, temperature, and strain on the dynamic recrystallization of Carrara marble. J Geophys Res, 100(B12): 24651-24663.
[28]  Rutter E H, Brodie K H and Irving D H. 2006. Flow of synthetic, wet, partially molten "granite" under undrained conditions: An experimental study. J Geophys Res, 111, B06407: 10.1029/2005JB004257.
[29]  Rutter E H and Neumann D H K. 1995. Experimental deformation of partially molten Westerly granite under fluid?absent conditions, with implications for the extraction of granitic magmas. J Geophys Res, 100(B8): 15697-15715.
[30]  Rybacki E and Dresen G. 2000. Dislocation and diffusion creep of synthetic anorthite aggregates. J Geophys Res, 105(B11): 26017-26036.
[31]  Rybacki E, Gottschalk M, Wirth R and Dresen G. 2006. Influence of water fugacity and activation volume on the flow properties of fine?grained anorthite aggregates. J Geophys Res, 111, B03203: 10.1029/2005JB003663.
[32]  Rybacki E, Paterson M S, Wirth R and Dresen G. 2003. Rheology of calcite?quartz aggregates deformed to large strain in torsion. J Geophys Res, 108, B22089: 10.1029/2002JB001833.
[33]  Rybacki E, Wirth R and Dresen G. 2008. High strain creep of feldspar rocks: Implications for cavitation and ductile failure in the lower crust. Geophys Res Lett, 35, L04304: 10.1029/2007GL0.2478.
[34]  Rybacki E, Wirth R and Dresen G. 2010. Superplasticity and ductile fracture of synthetic feldspar deformed to large strain. J Geophys Res, 115, B08209: 10.1029/2009JB007203.
[35]  Schmid S M, Boland J N and Paterson M S. 1977. Superplastic flow in finegrained limestone. Tectonophysics, 43: 257-291.
[36]  Schmid S M, Paterson M S and Boland J N. 1980. High temperature flow and dynamic recrystallization in Carrara Marble. Tectonphysics, 65: 245-280.
[37]  Scott T and Kohlstedt D L. 2006. The effect of large melt fraction on the deformation behavior of peridotite. Earth Planet Sci Lett, 246: 177-187.
[38]  Shelton G and Tullis J. 1981. Experimental flow laws for crustal rocks. EOS Trans AGU, 62: 396.
[39]  Shimomura O, Yamaoka T, Yagi T, Wakatsuki M, Tsuji K, Kawamura H, Hamaya N, Aoki K and Akimoto S. 1985. Multi?anvil type X?ray system for synchrodron radiation // Minomura S. Solid state physics under pressure. Tokyo: Terra Scientific: 351-356.
[40]  Singh A K. 1993. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J Appl Phys, 73(9): 4278-4286.
[41]  Stretton I C and Olgaard D L. 1997. A transition in deformation mechanism through dynamic recrystallization―evidence from high strain, high temperature torsion experiments. EOS Trans AGU, 78: 723.
[42]  Sundberg M and Cooper R F. 2008. Crystallographic preferred orientation produced by diffusional creep of harzburgite: Effects of chemical interactions among phases during plastic flow. J Geophys Res, 113, B12208: 10.1029/2008JB005618.
[43]  Tenthorey E and Cox S F. 2003. Reaction?enchanced permeability during serpentinite dehydration. Geology, 31: 921-924.
[44]  Tenthorey E and Fitz Gerald J D. 2006. Feedbacks between deformation, hydrothermal reaction and permeability evolution in the crust: Experimental insights. Earth Planet Sci Lett, 247: 117-129.
[45]  Wang Y B, Durham W B, Getting I C and Weidner D J. 2003. The deformation?DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Review of Scientific Instruments, 74(6): 3002-3011.
[46]  White S H and Knipe R J. 1978. Transformation? and reaction?enchanced ductility in rocks. Journal of Geological Society, 135: 513-516.
[47]  Xiao X, Evans B and Bernabé Y. 2006. Permeability evolution during non?linear viscous creep of calcite rocks. Pure Appl Geophys, 163: 2071-2102.
[48]  Yamazaki D and Karato S I. 2001. High?pressure rotational deformation apparatus to 15 GPa. Review of Scientific Instruments, 72(11): 4207-4211.
[49]  Zhang S Q and Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Letters To Nature, 375: 774-777.
[50]  Zhang S O, Karato S I, Fitz Gerald J D, Faul U H and Zhou Y. 2000a. Simple shear deformation of olivine aggregates. Tectonophysics, 316: 133-152.
[51]  Zhang S Q, Fitz Gerald J D and Cox S F. 2000b. Reaction?enhanced permeability during decarbonation of calcite+quartz→wollastonite+carbon dioxide. Geology, 28: 911-914.
[52]  Zimmerman M E, Zhang S Q, Kohlstedt D L and Karato S I. 1999. Melt distribution in mantle rocks deformed in shear. Geophys Res Lett, 26(10): 1505-1508.
[53]  嵇少丞, 王茜, 许志琴. 2008a. 华北克拉通破坏与岩石圈减薄. 地质学报, 82(2): 174-193.
[54]  赵永红, Lawlis J D, Karato S, Zimmermann M. 2002b. 橄榄石-尖晶石相转变流变学的实验研究. 地球物理学报, 45, 225-230.
[55]  赵永红, 李小凡, 李扬, Zimmerman M, Kohlstedt D L. 2007. 铁橄榄石高温高压流变性的实验研究. 岩石学报, 23(11): 2927-2932.
[56]  Boyd F R and England J L. 1960. Apparatus for phase equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750 ℃. J Struct Geol, 65: 741-748.
[57]  Bruhn D, Groebner N and Kohlstedt D L. 2000. An interconnected network of core?forming melts produced by shear deformation. Letters To Nature, 403: 883-886.
[58]  Bruhn D F, Olgaard D L and Dell’Angelo L N. 1999. Evidence for enhanced deformation in two?phase rocks: Experiments on the rheology of calcite?anhydrite aggregates. J Geophys Res, 104: 707-724.
[59]  Bussod G Y, Katsura T and Rubie D C. 1993. The large volume multi?anvil press as a high P?T deformation apparatus. Pure Appl Geophys, 141: 579-599.
[60]  Bystricky M, Heidelbach F and Mackwell S. 2006. Large?strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine?magnesiowüstite aggregates. Tectonophysics, 427: 115-132.
[61]  Bystricky M, Kunze K, Burlini L and Burg J?P. 2000. High shear strain of olivine aggregates: Rheological and seismic consequences. Science, 290: 1564-1567.
[62]  Bystricky M and Mackwell S. 2001. Creep of dry clinopyroxene aggregates. J Geophys Res, 106(B7): 13443-13454.
[63]  Caristan Y. 1982. The transition from high temperature creep to fracture in Maryland diabase. J Geophys Res, 87(B8): 6781-6790.
[64]  Casey M, Kunze K and Olgaard D L. 1998. Texture of Solnhofen limestone deformed to high strains in torsion. J Struct Geol, 20: 255-267.
[65]  Chen S, Hiraga T and Kohlstedt D L. 2006. Water weakening of clinopyroxene in the dislocation creep regime. J Geophys Res, 111, B08203: 10.1029/2005JB003885.
[66]  De Bresser J H P, Urai J I and Olgaard D L. 2005. Effect of water on the strength and microstructure of Carrara marble axially compressed et high temperature. J Struct Geol, 27: 265-281.
[67]  Delle Piane C, Burlini L and Grobety B. 2007. Reaction?induced strain localization: Torsion experiments on dolomite. Earth Planet Sci Lett, 256(1-2): 36-46.
[68]  Delle Piane C, Burlini L and Kunze K. 2009. The influence of dolomite on the plastic flow of calcite rheological, microstructural and chemical evolution during large strain torsion experiments. Tectonophysics, 467: 145-166.
[69]  Delle Piane C, Burlini L, Kunze K, Brack P and Pierre Burg J. 2008. Rheology of dolomite: Large strain torsion experimenüts and natural examples. J Struct Geol, 30: 767-776.
[70]  Demouchy S, Schneider S E, Mackwell S J, Zimmerman M E and Kohlstedt D L. 2009. Experimental deformation of olivine single crystals at lithospheric temperatures. Geophys Res Lett, 36, L04304: 10.1029/2008GL036611.
[71]  Dimanov A, Dresen G, Xiao X and Wirth R. 1999. Grain boundary diffusion creep of synthetic anorthite aggregates: The effect of water. J Geophys Res, 104(B5): 10483-10497.
[72]  Dimanov A and Dresen G. 2005. Rheology of synthetic anorthite?diopside aggregates: Implications for ductile shear zones. J Geophys Res, 110, B07203: 10.1029/2004JB003431.
[73]  Dimanov A, Lavie M P, Dresen G, Ingrin J and Jaoul O. 2003. Creep of polycrystalline anorthite and diopside. J Geophys Res, 108, B12061: 10.1029/2002JB001815.
[74]  Durham W B and Rubie D C. 1998. Can the multianvil apparatus really be used for high?pressure deformation experiments? // Manghnani M H and Yagi T. Properties of earth and planetary materials at high pressure and temperature, geophysical monograph 101. Washington : American Geophysical Union: 63-70.
[75]  Edmond J M and Paterson M S. 1972. Volume change during the deformation of rocks at high pressures. Int J Rock Mech Min Sci, 9: 161-182.
[76]  Fischer G J and Paterson M S. 1992. Measurements of permeability and storage capacity in rocks during deformation at high temperature and pressure // Evans B and Wong T F. Fault mechanics and transport properties of rocks. International Geophysics: 213-252.
[77]  Fliervoet T F, Drury M R and Chopra P N. 1999. Crystallographic preferred orientations and misorientations in some olivine rocks deformed by diffusion or dislocation creep. Tectonophysics, 303(1-4): 1-27.
[78]  Fredrich J T, Evans B and Wong T F. 1989. Micromechanics of the brittle to plastic transition in Carrara marble. J Geophys Res, 94: 4129-4145.
[79]  Gere J M and Timoshenko S P. 1984. Mechanics of Materials. PWS Engineering, Boston, Massachusetts: 768.
[80]  Giger S B, Tenthorey E, Cox S F and Fitz Gerald J D. 2007. Permeability evolution in quartz fault gouges under hydrothermal conditions. J Geophys Res, 112. B07202: 10.1029/2006JB004828.
[81]  Gleason G C and Tullis J. 1993. Improving flow laws and piezometers for quartz and feldspar aggregates. Geophys Res Lett, 20: 2111-2114.
[82]  Gleason G C and Tullis J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247: 1-23.
[83]  Green II H W and Borch R S. 1990. High pressure and temperature deformation experiments in a liquid confining medium // Duba A G, Durham W B, Handin J W and Wang H F. The brittle?ductile transition in rocks. Washington, D.C: The Heard Volume, Geophys Monogr Ser, 56: 195-200.
[84]  Griggs D T and Blacic J D. 1965. Quartz: Anomalous weakness of synthetic crystals. Science, 147: 292-295.
[85]  Heard H C, Borg I Y, Carter N L and Raleigh C B. 1972. Flow and Fracture of Rocks. American Geophysical Union Monograph, 16: 352.
[86]  Heidelbach F, Terry M P, Bystricky M, Holzapfel C and McCammon C. 2009. A simultaneous deformation and diffusion experiment: Quantifying the role of deformation in enhancing metamorphic reactions. Earth Planet Sci Lett, 278: 386-394.
[87]  Heilbronner R and Bruhn D. 1998. The influence of three?dimensional grain size distributions on the rheology of polyphase rocks. J Struct Geol, 20(6): 695-705.
[88]  Herwegh M, Xiao X and Evans B. 2003. The effect of dissolved magnesium on diffusion creep in calcite. Earth Planet Sci Lett, 212, 457-470.
[89]  Hier?Majumder S, Mei S H and Kohlstedt D L. 2005. Water weakening of clinopyroxenite in diffusion creep. J Geophys Res, 110. B07406: 10.1029/2004JB003414.
[90]  Holtzman B K, Groebner N J, Zimmerman M E, Ginsberg S B and Kohlstedt D L. 2003. Stress?driven melt segregation in partially molten rocks. Geochem Geophys Geosyst, 4(5):1-26. 8607: 10.1029/2001GC000258.
[91]  Holtzman B K and Kohlstedt D L. 2007. Stress?driven melt segregation and strain partitioning in partially molten rocks: Effects of stress and strain. J Petrol, 48(12): 2379-2406.
[92]  Jaoul O, Tullis J and Kronenberg A K. 1984. The effect of varying water content on the creep behavior of Heavitree quartzite. J Geophys Res, 89(B6): 4298-4312.
[93]  嵇少丞, 钟大赉, 许志琴, 夏斌. 2008b. 流变学: 构造地质学和地球动力学的支柱学科. 大地构造与成矿学, 32(3): 257-264.
[94]  赵永红, Ginsberg S, Kohlstedt D L. 2001a. 橄榄石水溶性与含铁量相关性的实验研究. 岩石学报, 17(1): 123-128.
[95]  赵永红, Lawlis J D, Karato S. 2001b. 镍锗尖晶石位错域的高温蠕变实验研究. 地球物理学报, 44(5): 696-703.
[96]  赵永红, Lawlis J D, Karato S. 2002a. 镍锗尖晶石扩散域高温蠕变性能的实验研究. 力学学报, 34: 362-368.
[97]  赵永红, Mecklenburgh J, Heidelbach F, Mackwell S. 2004. 锗橄榄石-尖晶石扭转大变形实验研究. 岩石学报, 20(3): 747-752.
[98]  赵永红, 綦超, 李扬, Zimmerman M, Kohlstedt D L. 2008. 橄榄石集合体扭转大变形实验研究. 岩石学报, 24(6): 1411-1416.
[99]  赵永红, 施旭, Zimmerman M, Kohlstedt D L. 2006. 含水对富铁橄榄石流变性的影响. 岩石学报, 22(9): 2381-2386.
[100]  赵永红, 王中言, Bruhn D F, Kohlstedt D L. 2003. 压力对橄榄石流变性的影响. 岩石学报, 19(3): 577-582.
[101]  赵永红, 王中言, Kohlstedt D L. 2009. 橄榄石集合体中与位错蠕变相伴随的粒间滑动. 岩石学报, 25(3): 708-712.
[102]  赵永红, Zimmerman M, Kohlstedt D L. 2005. 富铁橄榄石的高温变形实验研究. 岩石学报, 21(3): 999-1004.
[103]  Avé Lallemant H G and Carter N L. 1970. Syntectonic recrystallization of olvine and modes of flow in the upper mantle. Geol Soc Am Bull, 81: 2203-2220.
[104]  Bai Q, Mackwell S J and Kohlstedt D L. 1991. High?temperature creep of olivine single crystals 1. Mechanical results for buffered samples. J Geophys Res, 96: 2441-2463.
[105]  Barnhoorn A, Bystricky M, Burlini L and Kunze K. 2004. The role of recrystallistation on the deformation behavior of calcite rocks: Large strain torsion experiments on Carrara marble. J Struct Geol, 26: 885-903.
[106]  Barnhoorn A, Bystricky M, Burlini L and Kunze K. 2005a. Post?deformational annealing of calcite rocks. Tectonophysics, 403: 167-191.
[107]  Barnhoorn A, Bystricky M, Kunze K, Burlini L and Burg J?P. 2005b. Strain localization in bimineralic rocks: Experimental deformation of synthetic calcite?anhydrite aggregates. Earth Planet Sci Lett, 240: 748-763.
[108]  Barreiro J G, Lonardelli I, Wenk H R, Dresen G, Rybacki E, Ren Y and Tomé C N. 2007. Preferred orientation of anorthite deformed experimentally in Newtonian creep. Earth Planet Sci Lett, 264: 188-207.
[109]  Bernabé Y, Mok U, Evans B and Herrmann F J. 2004. Permeability and storativity of binary mixtures of high? and low?permeability materials. J Geophys Res, 109: B12207, 10.1029/2004JB003111.
[110]  Griggs D T. 1967. Hydrolytic weakening of quartz and other silicates. Geophysical Journal of the Royal Astronomical Society, 14(1-4): 19-31.
[111]  Heard H C. 1963. Effect of large changes in strain rate in the experimental deformation of Yule marble. Journal of Geology, 71: 162-195.
[112]  Hier?Majumder S and Kohlstedt D L. 2006. Role of dynamic grain boundary wetting in fluid circulation beneath volcanic arcs. Geophys Res Lett, 33. L08305: 10.1029/2006GL025716.
[113]  Kohlstedt D L, Zimmerman M E and Mackwell S J. 2010. Stress?driven melt segregation in partially molten feldspathic rocks. J Petrol, 51: 9-19.
[114]  Mackwell S J, Kohlstedt D L and Paterson M S. 1985. The role of water in the deformation of olivine single crystals. J Geophys Res, 90(B13): 11319-11333.
[115]  Mackwell S J, Zimmerman M E and Kohlstedt D L. 1998. High?temperature deformation of dry diabase with application to tectonics on Venus. J Geophys Res, 103(B1): 975-984.
[116]  Mackwell S J and Paterson M S. 2002. New development in deformation studies: High?strain deformation. Rev Mineral Geochem, 51(1):1-19.
[117]  Mauler A, Bystricky M, Kunze K and Mackwell S. 2000. Microstructures and lattice preferred orientations in experimentally deformed clinopyroxene aggregates. J Struct Geol, 22: 1633-1648.
[118]  Mecklenburgh J, Heidelbach F, Mariani E, Mackwell S and Seifert F. 2010. Rheology and microstructure of (Ca0.9, Sr0.1)TiO3 perovskite deformed in compression and torsion. J Geophys Res, 115, B05204: 10. 1029/2009JB006520.
[119]  Mecklenburgh J, Zhao Y H, Heidelbach F and Mackwell S. 2006. Deformation of olivine?spinel aggregates in the system (Mg, Ni)2GeO4 deformed to high strain in torsion: Implications for upper mantle anisotropy. J Geophys Res, 111, B11209: 10.1029/2006JB004285.
[120]  Mei S, Bai W, Hiraga T and Kohlstedt D L. 2002. Influence of melt on the creep behavior of olvine?basalt aggregates under hydrous conditions. Earth Planet Sci Lett, 201: 491-507.
[121]  Mei S and Kohlstedt D L. 2000a. Influence of water on plastic deformation of olivine aggregates 1. Disffusion creep regime. J Geophys Res, 105(B9): 21457-21469.
[122]  Nicolas A, Bouchez J Z, Boudier F and Mercier J C. 1971. Textures, structures and fabrics due to solid state flow in some European lherzolites. Tectonophysics, 12(1): 55-86.
[123]  Nicolas A, Boudier F and Boullier A M. 1973. Mechanism of flow in naturally and experimentally deformed peridotites. American Journal of Science, 273: 853-876.
[124]  Paterson M S. 1970. A high?pressure, high?temperature apparatus for rock deformation. Int J Rock Mech Min Sci, 7: 517-526.
[125]  Paterson M S. 1990. Rock deformation experimentation // Duba A G et al. AGU Geophysical Monograph 56. The brittle?ductile transition in rocks. Washington D C: 187-194.
[126]  Paterson M S, Chopra P N and Horwood G R. 1982. The jacketing of specimens in high?temperature, high?pressure rock?deformation experiments. High Temp High Pressure, 14: 315-318.
[127]  Rubey W W and Hubbert M K. 1959. Role of fluid pressure in mechanics of overthrust faulting. Bulletin of the Geological Society of America, 70(2): 115-166.
[128]  Viti C and Hirose T. 2009. Dehydration reactions and micro/nanostructures in experimentally?deformed serpentinites. Contrib Mineral Petrol, 157: 327-338.
[129]  von Kármán T. 1911. Festigkeitsversuche unter allseitigem Druck. Z Verein Deutsch Ing, 55: 1749-1757.
[130]  Xiao X, Wirth R and Dresen G. 2002. Diffusion creep of anorthite?quartz aggregates. J Geophys Res, 107, B112279: 10.1029/2001JB000789.
[131]  Xu L and Evans B. 2010. Strain heterogeneity in deformed Carrara marble using a microscale strain mapping technique. J Geophys Res, 115, B04202: 10.1029/2009JB006458.
[132]  Xu L, Renner J, Herwegh M and Evans B. 2009. The effect of dissolved magnesium on creep of calcite Ⅱ: Transition from diffusion creep to dislocation creep. Contrib Mineral Petrol, 157: 339-358.
[133]  Zhang S Q, Cox S F and Paterson M S. 1994a. The influence of room temperature deformation on porosity and permeability in calcite aggregates. J Geophys Res, 99(B8): 15761-15775.
[134]  Zhang S Q, Paterson M S and Cox S F. 1994b. Porosity and permeability evolution during hot isostatic pressing of calcite aggregates. J Geophys Res, 99(B8): 15741-15760.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133