全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂形态岩体接触带成矿耦合动力学三维数值模拟:以安庆铜矿为例

, PP. 128-136

Keywords: 复杂岩体成矿,矽卡岩矿床,网格模型构建,三维数值模拟,安庆铜矿

Full-Text   Cite this paper   Add to My Lib

Abstract:

安庆铜矿是长江中下游成矿带中重要的矽卡岩矿床,其矿体绝大部分产在形态复杂的岩体接触带上,对于这种矿体定位特点,本文采用数值模拟的方法探讨了其动力学机制和主要的控矿因素。首先以AutoCAD和GOCAD为平台构建安庆铜矿岩体及围岩的三维实体模型,并通过C++编程实现到模拟软件的模型格式转换,然后以FLAC3D为平台进行安庆铜矿热液成矿过程的力-热-流耦合数值模拟。结果显示,受控于拉张应力场,岩体大部分位置表现为正的体应变;月山岩体东枝南接触带是扩容最为明显的区域,部分岩石单元的大扩容角对扩容区出现有一定的贡献,岩石物理性质的差异及接触带的复杂形态则是其主要原因;岩石扩容部位成为流体汇集的有利场所,汇流部位与明显扩容区及主矿体产出位置相一致,推断矿体的定位是力-热-流共同作用的结果;运算结果亦指示现有矿体深部存在新的有利找矿靶区。

References

[1]  陈江峰, 李学明, 周泰禧, Foland K A. 1991. 安徽月山岩体的40Ar/39Ar年龄及与其有关的成矿时代估计. 现代地质, 5 (1): 91- 99.
[2]  崔学军, 夏斌, 张宴华, 刘宝明, 王冉, 闫义. 2005. 地幔活动在南海扩张中的作用数值模拟与讨论. 大地构造与成矿学, 29 (3): 334-338.
[3]  董树文, 邱瑞龙. 1993. 安庆-月山地区构造作用与岩浆活动. 北京: 地质出版社: 1-18.
[4]  唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社: 32-37.
[5]  吴立新, 史文中, Christopher G. 2003. 3DGIS与3DGMS中的空间构模技术. 地理与地理信息科学, 19(1): 5-11.
[6]  谢焱石,谭凯旋,郝涛. 2010. 构造-流体-成矿作用的分形与混沌动力学. 大地构造与成矿学,34(3): 378-385.
[7]  徐政语, 姚根顺, 林舸, 郭庆新. 2006. 江汉叠合盆地及邻区中生代以来盆山耦合数值模拟研究. 大地构造与成矿学, 30(3): 305-311.
[8]  周涛发, 刘晓东, 袁峰, 岳书仓. 2001a. 安徽月山矿田成矿流体的迁移速率和规模. 地质论评, 47(2): 139-145.
[9]  周涛发, 岳书仓, 袁峰. 2001b. 安徽月山矿田铜、金矿床氢氧同位素地球化学及成矿流体输运-化学反应成矿动力学. 安徽地质, 11(2): 131-139.
[10]  Itascs Consulting Group, Inc. 2002. FLAC3D: Fast lagrangian analysis of continnua in 3 dimisions. User′s manual, Version2.1. Minneapolis.
[11]  Lin G, Zhang Y, Guo F, Wang Y J and Fan W M. 2005. Numerical modelling of lithosphere evolution in the North China Block: Thermal versus tectonic thinning. Journal of Geodynamics, 40: 92-103.
[12]  Liu L M, Yang G Y and Peng S L. 2005. Numerical modeling of coupled geodynamical processes and its role in facilitating predictive ore discovery: An example from Tongling, China. Resource Geology, 55(1): 21-31.
[13]  Liu L M and Zhang Y H. 2007. Numerical modeling of the coupled mechanical and hydrological processes during deformation and mineralization in the Mount Isa Block, Australia. Resource Geology, 57(3): 283-300.
[14]  Liu L M, Zhao Y L and Zhao C B. 2010. Coupled geodynamics in the formation of Cu skarn deposits in the Tongling?Anqing district, China: Computational modeling and implications for exploration. Journal of Geochemical Exploration, 106: 146-155.
[15]  Mallet J L. 1992. Discrete smooth interpolation in geometric modeling. Computer?Aided Design, 24(4): 178-191.
[16]  Mao J W, Wang Y T, Lehmann B, Yu J J, Du A D, Mei Y X, Li Y F, Zang W S, Stein H J and Zhou T F. 2006. Molybdenite Re?Os and albite 40Ar/39Ar dating of Cu?Au?Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Reviews, 29: 307-324.
[17]  Meinert L D. 1992. Skarns and skarn deposits. Geoscience Canada, 19(4): 145-162.
[18]  Sch?n J H. 1998. Physical properties of rocks: Fundamentals and principles of petrophysics. Oxford: Elsevier: 1- 360.
[19]  Zhang Y, Hobbs B E, Ord A, Barnicoat A, Zhao C, Walshe J L and Lin G. 2003. The influence of faulting on host?rock permeability, fluid flow and ore genesis of gold deposits: A theoretical 2D numerical model. Joumal of Geochemical Exploration, 78-79: 279-284.
[20]  龚纪文, 崔建军, 席先武, 林舸. 2002. FLAC数值模拟软件及其在地学中的应用. 大地构造与成矿学, 26(3): 321-325.
[21]  刘亮明, 疏志明, 赵崇斌, 万昌林, 蔡爱良, 赵义来. 2008. 矽卡岩矿床的汇流扩容空间控矿机制及其对深部找矿的意义:以铜陵-安庆地区为例. 岩石学报, 24(8): 1848-1856.
[22]  马润勇, 席先武, 彭建兵, 赵法锁, 李喜安. 2005. 青藏高原递进式隆升的力学模式. 大地构造与成矿学, 29(4): 451-458.
[23]  周涛发, 岳书仓. 1997. 安徽月山矿田铜矿床的形成机制. 长春地质学院学报, 27(3): 310-316.
[24]  Hobbs B E, Zhang Y H, Ord A and Zhao C B. 2000. Application of coupled deformation, fluid flow, thermal and chemical modeling to predictive mineral exploration. Journal of Geochemical Exploration, 69-70: 505-509.
[25]  Norton D L and Dutrow B L. 2001. Complex behavior of magma?hydrothermal proceeses: Role of supercritical fluid. Geochimica et Cosmochimica Acta, 65: 4009-4017.
[26]  Price G P and Stoker P. 2002. Australian Geodynamics Cooperative Research Center′s integated research program delivers a new minerals exploration strategy for industry. Australian Journal of Earth Sciences, 49: 595-600.
[27]  Zhang Y, Lin G, Roberts P and Ord A. 2007. Numerical modelling of deformation and fluid flow in the Shuikoushan district, Hunan Province, South China. Ore Geology Reviews, 31: 261-278.
[28]  Zhang Y, Sorjonen?Ward P and Ord A. 2006. Modelling fluid transport associated with mineralization and deformation in the Outokumpu Cu?Zn?Co deposit, Finland. Journal of Geochemical Exploration, 89: 465-469.
[29]  Zhao C B, Hobbs B E and Ord A. 2008. Investigating dynamic mechanisms of geological phenomena using methodology of computational geosciences: An example of equal?distant mineralization in a fault. Science in China Series D: Earth Sciences, 51(7): 947-954.
[30]  Zhou T F, Yuan F, Yue S C, Liu X D, Zhang X and Fan Y. 2007. Geochemistry and evolution of ore?forming fluids of the Yueshan Cu?Au skarn? and vein?type deposits, Anhui Province, South China. Ore Geology Reviews, 31: 279- 303.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133