全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新疆巴楚地区共轭膝折带的物理模拟研究

, PP. 24-31

Keywords: 巴楚地区,共轭膝折带,物理模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以塔里木地区巴楚隆起地层及构造为原型,设计了3层结构模型:底部为黄油层,作为滑脱层;中间为黏土层,模拟该地区膝折发育的地层;上部为细砂层,模拟上部松散沉积。研究了挤压速率、黄油层厚度、砂层厚度等因素对共轭膝折带形成的影响,对共轭膝折带的形成和演化阶段进行分析。结果表明:形成膝折带的有利条件是较厚的基底滑脱单元、上覆压力,中等挤压速率;在基底滑脱单元较厚的条件下,首先在能干单元的边部发育逆冲断裂体系,随后在能干单元的中央位置发育膝折型褶皱;膝折构造产生之后,随着挤压变形的持续进行,将产生调节断裂;在持续的挤压应变环境中,膝折型褶皱的演变基本经历了宽缓褶皱→紧闭褶皱→突起构造变形或断层调节变形。

References

[1]  丁文龙,林畅松,漆立新,黄太柱,余腾孝. 2008. 塔里木盆地巴楚隆起构造格架及形成演化. 地学前缘,15(2):242?252.
[2]  付建奎,马郡. 1999. 塔里木盆地巴楚地区构造样式与演化. 石油勘探与开发,26(5):10?11.
[3]  郭卫星,漆家福. 2008. 同沉积褶皱生长地层中沉积与构造关系. 现代地质,22(4):520?524.
[4]  韩长伟,马培领,朱斗星,杜大伟,肖江,刘雪梅.2009.塔里木盆地东部地区构造特征及其演化. 大地构造与成矿学,33(1):131?135.
[5]  何文渊,李江海,钱祥麟,张臣. 2000.塔里木盆地巴楚断隆中新生代的构造演化. 北京大学学报(自然科学版),36(4):539?546.
[6]  贾承造等. 2004. 塔里木盆地中新生代构造特征与油气. 北京: 石油工业出版社.
[7]  李强,赵丽.2009.塔里木盆地东南隆起演化及构造特征分析. 大地构造与成矿学,33(1):154?159.
[8]  汪道京,张占文,肖乾华. 2008. 辽河盆地是二期构造应力作用的产物:来自构造物理模拟实验的新认识. 大地构造与成矿学,32(2):143?150.
[9]  邬光辉,李启明,肖中尧,李洪辉,张立平,张现军.2009.塔里木盆地古隆起演化特征与油气勘探. 大地构造与成矿学,33(1):124?130.
[10]  Mitra S. 2003. A unified kinematic model for the evolution of detachment folds. Journal of Structural Geology, 25(10): 1659-1673.
[11]  Moran P M and Shih C F. 1998. Kink band propagation and broadening in ductile matrix fiber composites: Experiments and analysis. International Journal of Solids and Structures, 35(15): 1709-1722.
[12]  Poblet J, McClay K, Storti F and Muoz J. 1997. Geometries of syntectonic sediments associated with single?layer detachment folds. Journal of Structural Geology, 19(3-4): 369-381.
[13]  Poulsen J S, Moran P M,Shih C F and Byskov E. 1997. Kink band initiation and band broadening in clear wood under compressive loading. Mechanics of Materials, 25(1): 67-77.
[14]  Ramsay J G. 1987. The techniques of modern structural geology (Volume 2). Academic Press: 124.
[15]  Ramsay J G. 1962. The geometry of conjugate fold systems. Geology, 99:516-528.
[16]  Wadee M A and Edmunds R. 2005. Kink band propagation in layered structures. Journal of the Mechanics and Physics of Solids, 53(9): 2017-2035.
[17]  Zheng Yadong, Wang Tao, Ma Mingbo and Davis A. 2004. Maximum effective moment criterion and the origin of low?angle normal faults. Journal of Structural Geology, 26(2): 271-285.
[18]  李应平,朱德茂. 2001. 湖北银洞沟银金矿床“膝折”构造形成机理及应用. 火山地质与矿产, 22(4):292?299.
[19]  曾佐勋. 1992. 构造模拟. 武汉: 中国地质大学出版社:9?11.
[20]  郑亚东,莫午零,张文涛,关平. 2007a. 柴达木盆地油气勘探新思路. 石油勘探与开发,34(1):13?18.
[21]  郑亚东,王涛,王新社. 2007b. 神秘的109.4°――共轭变形带的夹角. 地质科学,42(1):1?9.
[22]  周叶,林舸,龚发雄,刘士林,张德圣.2007.单层褶皱变形过程中最大主应力与水平应变的变化及其影响因素.大地构造与成矿学,31(1):37?43.
[23]  Anderson T B. 1964. Kink?bands and related geological structures. Nature, 202: 272?274.
[24]  Anderson T B. 1975. The relationship between kink?bands and shear fractures in the experimental deformation of slate. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(1): 249?367.
[25]  Buchanan P G and McClay K R. 1991. Sandbox experiments of inverted listric and planar fault systems. Tectonophysics, 188(1-2):97-115.
[26]  Edmunds R and Wadee M A. 2005. On kink banding in individual PPTA fibres. Composites Science and Technology, 65(7): 1284-1298.
[27]  Koyi H. 1995.Mode of internal deformation in sand wedges. Journal of Structural Geology, 17(2): 293-300.
[28]  McClay K and Bonora M. 2001. Analog models of restraining stepovers in strike?slip fault systems. AAPG Bulletin, 85(2): 233-260.
[29]  McClay K and Dooley T. 1995. Analog models of pull?apart basins. Geology, 23(8): 711-714.
[30]  Mitra S. 2002. Structural models of faulted detachment folds. AAPG Bulletin, 86(9): 1673-1694.
[31]  Paterson M S and Weiss L E. 1966. Experimental deformation and folding in phyllite. Geological Society of America Bulletin, 77(4): 343-374.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133