全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

东准噶尔晚古生代依旧存在俯冲消减作用――来自石炭纪火山岩岩石学、地球化学及年代学证据

, PP. 140-156

Keywords: 火山岩,地球化学,弧后盆地,石炭纪,巴塔玛依内山组,东准噶尔

Full-Text   Cite this paper   Add to My Lib

Abstract:

东准噶尔地区石炭纪巴塔玛依内山组火山岩分布广泛,规模巨大。对其岩石学、元素地球化学及同位素地球化学研究表明:1)该套火山岩岩石类型复杂,具玄武岩-安山岩-英安岩-流纹岩组合特征,属高钾钙碱性火山岩系,并富集大离子亲石元素(Sr、K、Rb、Ba、Th)和轻稀土元素,亏损高场强元素(Nb、Ta、Ti)和重稀土元素,87Sr/86Sr和143Nd/144Nd初始值分别为0.70385~0.71312,0.152378~0.512998,εNd(t)多介于3.0~6.2之间,显示了与俯冲消减作用相关的不成熟弧后盆地火山岩地球化学特征。2)火山岩物质来源以亏损地幔源为主,并混有少量主体由古生代残余洋壳、岛弧体系组成的年轻下地壳物质。其中,基性熔岩以亏损地幔源为主,并在岩浆源区与少量新生地壳物质发生了近乎完全的壳-幔岩浆混合和Sm-Nd同位素体系均一化,其形成很可能与俯冲沉积物和(或)俯冲洋壳变质脱水产生的流体引起上覆地幔楔物质的部分熔融有关;而酸性熔岩与基性熔岩存在明显的不同,酸性熔岩是少量幔源岩浆经强烈结晶分异和经历较多壳源物质混染的结果。3)玄武岩全岩Sm-Nd等时线年龄为319.7±5.9Ma,与区域地质构造背景和已有化石证据基本一致,代表了火山岩的形成时代。综合研究表明,东准噶尔地区320Ma左右依旧存在古亚洲洋的俯冲消减作用,准噶尔古洋盆最终闭合时间应介于320~311Ma之间。在此过程中,火山岩浆作用强烈,蕴含成矿物质丰富,东准噶尔地区找矿前景值得期待。

References

[1]  邓晋福, 罗照华, 苏尚国, 莫宣学, 丁炳松, 赖兴运, 湛宏伟. 2009. 岩石成因构造环境与成矿作用. 北京: 地质出版社: 1?381.
[2]  邓晋福, 肖庆辉, 苏尚国, 刘翠, 赵国春, 吴宗絮, 刘勇. 2007. 火成岩组合与构造环境: 讨论. 高校地质学报, 13(3): 392?402.
[3]  谭佳奕, 吴润江, 张元元, 王淑芳, 郭召杰. 2009. 东准噶尔卡拉麦里地区巴塔玛依内山组火山岩特征和年代确定. 岩石学报, 25(3): 539?546.
[4]  唐红峰, 苏玉平, 刘丛强, 侯广顺, 王彦斌. 2007. 新疆北部卡拉麦里斜长花岗岩的锆石U-Pb年龄及其构造意义. 大地构造与成矿学, 31(1): 110?117.
[5]  汪帮耀, 姜常义, 李永军, 吴宏恩, 夏昭德, 卢荣辉. 2009. 新疆东准噶尔卡拉麦里蛇绿岩的地球化学特征及大地构造意义. 矿物岩石, 29(3): 74?82.
[6]  王道永, 邓江红. 1995. 东准噶尔地区板块构造特征及演化. 成都理工学院学报, 22(4): 38?45.
[7]  吴小奇, 刘德良, 魏国齐, 李剑, 李振生. 2009. 准噶尔盆地陆东-五彩湾地区石炭系火山岩地球化学特征及其构造背景. 岩石学报, 25(1): 55?66.
[8]  夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩. 岩石矿物学杂志, 26(1): 77?89.
[9]  肖文交, 韩春明, 袁超, 陈汉林, 孙敏, 林寿发, 厉子龙, 毛启贵, 张继恩, 孙枢, 李继亮. 2006. 新疆北部石炭纪-二叠纪独特的构造成矿作用: 对古亚洲洋构造域南部大地构造演化的制约. 岩石学报, 22(5): 1062?1076.
[10]  肖序常, 汤耀庆, 冯益民. 1992. 新疆北部及邻区大地构造. 北京: 地质出版社: 1?167.
[11]  袁超, 肖文交, 陈汉林, 李继亮, 孙敏. 2006. 新疆东准噶尔扎河坝钾质玄武岩的地球化学特征及其构造意义. 地质学报, 80(2): 254?263.
[12]  Defant M J and Dmmmond M S. 1990. Derivation of some modem arc magmas by melting of young subducted lithosphere. Nature, 347: 662?665.
[13]  DePaolo D J and Wasserburg G J. 1977. The sources of island arcs as indicated by Nd and Sr isotopic studies. Geophysical Research Letters, 4: 465?468.
[14]  Dilek Y, Furnes H and Shallo M. 2008. Geochemistry of the Jurassic Mirdita ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos, 100: 174?209.
[15]  Dosso L, Boespflug X, Romeur M, Turpin L, Calvez J Y, Bougault H and Joron J L. 1988. Isotopic and trace element data on back-arc basalts from the South West Pacific basins and the Sunda arc. Chemical Geology, 70(1?2): 47.
[16]  Fretzdorff S, Livermore R A, Devey C W, Leat P T and Stoffers P. 2002. Petrogenesis of the back-arc East Scotia ridge, South Atlantic ocean. Journal of Petrol?ogy, 43(8): 1435?1467.
[17]  Gill J B. 1981. Orogenic andesites and plate tectonics. Springer-Verlag, New York: 1?390.
[18]  Hollings P. 2002. Archean Nb-enriched basalts in the northern superior province. Lithos, 64: 1?14.
[19]  Irvine T N and Barager W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523?548.
[20]  Keller R A, Fisk M R, Smellie J L, Strelin J A, Lawver L A and White W M. 2002. Geochemistry of back arc basin volcanism in Bransfield Strait, Antarctica: Subducted contributions and along-axis variations. Journal of Geophysical Research, 107: EVC4-1-EVC4-17.
[21]  Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D, Jerram D A , Keller F and Meugniot C. 2004. Flood and shield basalts from Ethiopia: Magmas from the African superswell. Journal of Petrology, 45(4): 793?834.
[22]  Le Maitre R W, Streckeisen A, Zanettin B, Le Bas M J, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine P A, Schmid R, Sorensen H and Woolley A R. 2002. Igneous Rocks: A classification and glossary of terms (2ed). Recomme?ndations of the international union of geological scien?ces subcommis?sion on the systematics of igneous rocks. Oxford: Cambridge University Press: 30?42.
[23]  Plank T and Langmuir C H. 1988. The chemical composition of subducling sediment and its consequences for the crust and mantle. Chemical Geology, 145: 325?394.
[24]  Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrol?ogy, 36(4): 891?931.
[25]  Rickwood P C. 1989. Boundary lines within petrological diagrams which use oxides of major and minor eleme?nts. Lithos, 22(4): 247?263.
[26]  Saunders A D and John T. 1979. The geochemistry of basalts from a back-arc spreading centre in the East Scotia Sea. Geochimica et Cosmochimica Acta, 43(4): 555?572.
[27]  Su Y P, Zheng J P, Griffin W L, Zhao J H, Tang H Y, Ma Q and Lin X Y. 2012. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition. Gondwana Research, 22: 1009?1029.
[28]  Tian L Y, Castillo P R, Hawkins J W, Hilton D R, Hanan B B and Pietruszka A J. 2008. Major and trace element and Sr-Nd isotope signatures of lavas from the Central Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle. Journal of Volcanology and Geothermal Research, 178: 657?670.
[29]  Turner S, Foden J, George R, Evans P, Varne R, Elburg M and Jenner G. 2003. Rates and processes of potassic magma evolution beneath Sangeang Api Volcano, East Sunda Arc, Indonesia. Journal of Petrology, 44: 491?515.
[30]  Weaver B L and Tarney J. 1984. Major and trace element composition of the continental lithosphere // Pollack H N and Murthy V R. Structure and evolution of the continental lithosphere, physics and chemistry of the earth. 15: 39?68.
[31]  Wedepohl K H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59: 1217?1232.
[32]  Winchester J A and Floyd P A. 1977. Geochemical discri?min-ation of different magma series and their different?tiation products using immobile elements. Chemical Geology, 20: 325?343.
[33]  Wyman D A, Ayer J A and Devaney J R. 2000. Niobium- enriched basalts from the Wabigoon subprovince, Canada: Evidence for adakitic metasomatism above an Archean subduction zone. Earth and Planetary Science Letters, 179: 21?30.
[34]  Xia L Q, Xia Z C, Xu X Y , Li X M, Ma Z P and Wang L S. 2005. Relationships between basic and silicic magmat?ism in continental rift settings: A petrogeochemical study of the Carboniferous post-collisional rift silicic volcanics in the Tianshan, NW China. Acta Geologica Sinica, 79(5): 633?653.
[35]  边伟华. 2011. 准噶尔盆地巴塔玛依内山组火山岩储层地质学研究. 长春: 吉林大学博士论文: 1?81.
[36]  陈家富, 韩宝福, 张磊. 2010. 西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义. 岩石学报, 26(8): 2317?2335.
[37]  崔美慧, 孟繁聪, 吴祥珂. 2011. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学, Sm-Nd同位素及年代学证据. 岩石学报, 27(11): 3365?3379.
[38]  董连慧, 徐兴旺, 屈迅, 李光明. 2009. 初论环准噶尔斑岩铜矿带的地质构造背景与形成机制. 岩石学报, 25(4): 713?737.
[39]  辜平阳, 李永军, 王晓刚, 张洪伟, 王军年. 2010. 西准噶尔达尔布特SSZ型蛇绿杂岩的地球化学证据及构造意义. 地质论评, 57(1): 36?44.
[40]  郝建荣, 周鼎武, 柳益群, 邢秀娟. 2006. 新疆三塘湖盆地二叠纪火山岩岩石地球化学及其构造环境分析. 岩石学报, 22(1): 189?198.
[41]  洪大卫, 王式光, 谢锡林, 张季生, 王涛. 2003. 试析地幔来源物质成矿域――以中亚造山带为例. 矿床地质, 22(1): 41?54.
[42]  皇甫岗, 姜朝松. 2006. 腾冲火山研究. 昆明: 云南科技出版社: 96?110.
[43]  李锦轶, 杨天南, 李亚萍, 朱志新. 2009. 东准噶尔卡拉麦里断裂带的地质特征及其对中亚地区晚古生代洋陆格局重建的约束. 地质通报, 28(12): 1817?1826.
[44]  李源, 杨经绥, 张健, 李天福, 陈松永, 任玉峰, 徐向珍. 2011. 新疆东天山石炭纪火山岩及其构造意义. 岩石学报, 27(1): 193?209.
[45]  刘家远, 钱建平, 程志平, 单丹娜. 2002. 新疆东准噶尔陆相火山作用与金铜成矿. 北京: 地质出版社: 1?225.
[46]  龙晓平, 孙敏, 袁超, 肖文交, 陈汉林, 赵永久, 蔡克大, 李继亮. 2006. 东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约. 岩石学报, 22(1): 31?40.
[47]  毛治国, 邹才能, 朱如凯, 郭宏莉, 王君, 唐勇, 祁利琪, 张志更. 2010. 准噶尔盆地石炭纪火山岩岩石地球化学特征及其构造环境意义化学特征及其构造环境意义. 岩石学报, 26(1): 207?216.
[48]  牛贺才, 单强, 张兵, 罗勇, 杨武斌, 于学元. 2009. 东准噶尔扎河坝蛇绿混杂岩中的石榴角闪岩. 岩石学报, 25(6): 1484?1491.
[49]  牛贺才, 单强, 张海祥, 于学元. 2007a. 东准噶尔扎河坝超高压变质成因石英菱镁岩的40Ar/39Ar同位素年代学信息及地质意义. 岩石学报, 23(7): 1627?1634.
[50]  牛贺才, 张海祥, 单强, 于学元. 2007b. 扎河坝石榴辉石岩中超硅-超钛石榴子石的发现及其地质意义. 科学通报, 52(18): 2169?2174.
[51]  舒良树, 王玉净. 2003. 新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石. 地质论评, 19(4): 408?412.
[52]  苏玉平, 唐红峰, 丛峰. 2008. 新疆东准噶尔黄羊山碱性花岗岩体的锆石U-Pb年龄和岩石成因. 矿物学报, 28(2): 117?126.
[53]  苏玉平, 郑建平, Griffin W L, 汤华云, O''Reilly S Y, 林向洋. 2010. 东准噶尔盆地巴塔玛依内山组火山岩锆石U-Pb年代及Hf同位素研究. 科学通报, 50(30): 2931?2943.
[54]  徐新, 何国琦, 李华芹, 丁天府, 刘兴义, 梅绍武. 2006. 克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息. 中国地质, 33(3): 470?475.
[55]  许继峰, 梅厚钧, 于学元, 白正华, 牛贺才, 陈繁荣, 郑作平, 王强. 2001. 准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩: 消减板片部分熔融的产物. 科学通报, 46(8): 684?688.
[56]  杨品荣, 顾松竹, 朱宗敏, 冯庆来. 2007. 准噶尔盆地东北缘下侏罗统地层中的放射虫硅质岩砾石研究. 矿物岩石, 27(3): 34?38.
[57]  张本仁. 2001. 大陆造山带地球化学研究:Ⅰ岩石构造环境地球化学判别的改进. 西北地质, 34(3): 1?17.
[58]  张海祥, 牛贺才, Hiroaki S, 单强, 于学元, Junichi I, 张旗. 2004. 新疆北部晚古生代埃达克岩、富铌玄武岩组合: 古亚洲洋板块南向俯冲的证据. 高校地质学报, 10(1): 106?113.
[59]  张海祥, 牛贺才, 于学元, Hiroaki S, Junichi I, 单强. 2003a. 新疆北部富蕴县沙尔布拉克玻安岩的地球化学特征及构造意义. 地球化学, 32(3): 155?160.
[60]  张海祥, 牛贺才, 于学元, 单 强, Hiroaki S, Junichi I. 2003b. 准噶尔板块东北缘富铌玄武岩的发现及其地质意义. 地质找矿论丛, 18(1): 71?72.
[61]  张元元, 郭召杰. 2010. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究. 岩石学报, 26: 421?430.
[62]  赵霞, 贾承造, 张光亚, 卫延召, 赖绍聪, 方向, 张丽君. 2008. 准噶尔盆地陆东-五彩湾地区石炭系中基性火山岩地球化学及其形成环境. 地学前缘, 15(2): 272?279.
[63]  周鼎武, 柳益群, 邢秀娟, 郝建荣, 董云鹏, 欧阳征健. 2006. 新疆吐哈-三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪. 中国科学(D辑), 36(2): 143?153.
[64]  朱弟成, 潘桂棠, 莫宣学, 王立全, 廖忠礼, 赵志丹, 董国臣, 周长勇. 2006. 冈底斯中北部晚侏罗世-早白至世地球动力学环境: 火山岩约束. 岩石学报, 22(3): 534?546.
[65]  朱志新, 李少贞, 李篙龄. 2005. 东准噶尔纸房地区晚石炭世巴塔玛依内山组陆相火山-沉积体系特征. 新疆地质, 23(1): 14?25.
[66]  Aldrich Jr M J, Chapin C E and Laughli A W. 1986. Stress history and tectonic development of the Rio Grande Rift, New Mexico. Journal of Geophysical Research: Solid Earth, 91: 6199?6211.
[67]  Cabanis P B and Thiéblemont D. 1988. La discrimination des thoeiites continentales et des basaltes arrière-arc. Proposition d''un nouveau diagramme, le triangle Th-3Tb-2Ta. Bulletin de la Societe Geologique de France, 4(6): 927?935.
[68]  Castillo P R and Newhall C G. 2004. Geochemical constraints on possible subduction components in lavas of Mayon and Taal Volcanoes, southern Luzon, Philippines. Journal of Petrology, 45(6): 1089?1108.
[69]  Chen B and Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69(5): 1307?1320.
[70]  Edwards C M H, Menzies M A, Thirlwall M F, Morris J D, Leeman W P and Harmon R S. 1994. The transition to potassic alkaline volcanics in island arcs: The Ringgit- Beser complex, East Java, Indonesia. Journal of Petrology, 35: 1557?1595.
[71]  Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56: 207?218.
[72]  Pearce J A and Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19: 290?300.
[73]  Pearce J A and Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69: 33?47.
[74]  Pearce J A, Harris N B W and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956?983.
[75]  Pearce, J A. 1982. Trace element characteristics of lavas from destructive plate boundaries // Thorpe R S. Orog?enic andesites and related rocks, Chichester, England: John Wiley and Sons: 528?548.
[76]  Rollinson H R. 1993. Using geochemical data: Evaluation, presentation, interpretation. Longnan Group UK Ltd., New York: 1?352.
[77]  Rudnick R L and Gao S. 2003. The composition of the continental crust // Holland H D and Turekinan K K. Treatise on geochemistry, Elsevier, Oxford: 1?64.
[78]  Saunders A D, Storey M, Kent R W and Norry M J. 1992. Consequences of plume lithosphere interaction. The Geological Society Special Pubication, 68: 41?60.
[79]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematic of ocean basalts: Implications for mantle composition and processes // Saunders A D and Norry M J. Magmatism in the Ocean Basins. The Geological Society of London, Special Publications, 42: 313?345.
[80]  Wilson M. 1989. Igneous Petrogenesis: A global Tectonic Approach. London: Unwin Hymen Ltd: 342-359.
[81]  Yin J Y, Yuan C, Sun M, Long X P, Zhao G C, Wong K P, Geng H Y and Cai K D. 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Research, 17(1): 145?152.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133