全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

岫玉的地震波速、各向异性、弹性力学性质及其构造地质意义

, PP. 12-26

Keywords: 岫玉,叶蛇纹岩,地震波速、各向异性、剪切波分裂,板块俯冲带,青藏高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究水化岩石圈地幔和地幔楔的地震波速、各向异性及其与蛇纹石化程度及应变状态的关系,作者实验测量了8块叶蛇纹岩(采自辽宁的岫玉)标本在不同构造主方向(X,Y和Z)上的纵、横波速度随围压(0~600MPa)的变化规律,详细研究了叶蛇纹石在塑性变形过程中通过(001)[010]位错滑移形成很强的晶格优选定向和高达21%的纵波速度各向异性与24%的剪切波分裂的特征,发现高温叶蛇纹岩与低温利蛇纹岩具有截然不同的地震波性质,例如,在围压600MPa下,高温叶蛇纹岩的Vp=6.73km/s、Vs=3.74km/s,Vp/Vs=1.80,而低温利蛇纹岩的Vp=5.10km/s、Vs=2.32km/s,Vp/Vs=2.20。前人利用低温蛇纹石化橄榄岩的波速数据解释温度高于300℃的水化地幔楔和岩石圈地幔的地震波速不可避免地要低估研究区域内蛇纹石化的程度和水含量。本研究查明叶蛇纹岩的地震波性质及其各向异性特征亦为解释全球大洋板块俯冲带乃至青藏高原地区的剪切波分裂资料提供了新的思路。

References

[1]  Bezacier L, Reynard B, Bass J D, Sanchez-Valle C and Van de Moortèle B. 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth and Planetary Science Letters, 289: 198?208.
[2]  Birch F. 1960. The velocity of compressional waves in rocks to 10 kilobar, Part 1. Journal of Geophysical Research, 65: 1083?1102.
[3]  Bostock B C, Hyndman R D, Rondenay S and Peacock S M. 2002. An inverted continental Moho and the serpentinization of the forearc mantle. Nature, 417: 536?538.
[4]  Carlson R L and Miller D J. 2003. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites. Geophysical Research Letters, 30: 1250, doi: 10.1029/2002GL016600.
[5]  Chen W P, Martin M, Tseng T L, Nowack R L, Hung S H and Huang B S. 2010. Shear-wave birefringence and current configuration of converging lithosphere under Tibet. Earth and Planetary Science Letters, 295: 297?304.
[6]  Christensen N I. 1978. Ophiolites, seismic velocities, and oceanic crustal structure. Tectonophysics, 47: 131?157.
[7]  Christensen N I. 1996. Poisson’s ratio and crustal seismology. Journal of Geophysical Research, 101: 3139?3156.
[8]  Christensen N I and Ramananantoandro R. 1971. Elastic moduli and anisotropy of dunite to 10 kilobars. Journal of Geophysical Research, 76: 4003?4010.
[9]  Gerya T V, Stockhert B and Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics, 21: 6?19.
[10]  Guillot S, Hattori K, Agard P, Schwartz S and Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review // Lallemand S and Funiciello F. Subduction Zone Geodynamics. Springer- Verlag, Berlin Heidelberg:175?206.
[11]  Hacker B R, Peacock S M, Abers G A and Holloway S D. 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research, 108, 2030, doi:10.1029/2001JB001129.
[12]  Harlow G E and Sorensen S S. 2005. Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections. International Geological Review, 47: 113?146.
[13]  Herquel G and Tapponnier P. 2005. Seismic anisotropy in western Tibet. Geophysical Research Letters, 32, L17306, doi :10.1029/2005GL023561.
[14]  Hilairet N, Reynard B, Wang Yanbin, Daniel I, Markel S, Nishiyama N and Petitgirard S. 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science, 318: 1910?1913.
[15]  Hirauchi K, Michibayashi K, Ueda H and Katayama I. 2010. Spatial variations in antigorite fabric across a serpentinite subduction channel: Insights from the Ohmachi Seamount, Izu-Bonin frontal arc. Earth and Planetary Science Letters, 299(1?2): 196?206.
[16]  Kern H, Liu B and Popp T. 1997. Relationship between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolites. Journal of Geophysical Research, 102: 3051?3065.
[17]  Lavé J, Avouac J P, Lacassin R, Tapponnier P and Montagner J P. 1996. Seismic anisotropy beneath Tibet: Evidence for eastward extrusion of the Tibetan lithosphere. Earth and Planetary Science Letters, 140: 83?96.
[18]  Li Yonghua, Wu Qingju, Zhang Fengxue, Feng Qiangqiang and Zhang Ruiqing. 2011. Seismic anisotropy of the Northe-astern Tibetan plateau from shear wave splitting analysis. Earth and Planetary Science Letters, 304: 147?157.
[19]  Long M D and Silver P G. 2008. The subduction zone flow field from seismic anisotropy: A global view. Science, 319: 315?318.
[20]  McNamara D E, Owens T J, Silver P G and Wu F T. 1994. Shear wave splitting beneath the Tibetan Plateau. Journal of Geophysical Research, 99: 13655-13665.
[21]  Moore D E and Lockner D A. 2007. Comparative deformation behavior of minerals in serpentinized ultr?a?mafic rock: Application to the slab-mantle interface in subduction zones. International Geological Review, 49: 401?415.
[22]  Moortèle B, Bezacier L, Trullenque G and Reynard B. 2010. Electron back-scattering diffraction (EBSD) measur?ements of antigorite lattice-preferred orientations (LPO). Journal of Microscopy, 239: 245?248.
[23]  Pilchin A. 2005. The role of serpentinization in exhumation of high- to ultra-high-pressure metamorphic rocks. Earth and Planetary Science Letters, 237: 815?828.
[24]  Rondenay S, Bostock M G and Shragge J. 2001. Multiparameter two-dimensional inversion of scattered teleseismic body waves, 3: Application to the Cascadia 1993 data set. Journal of Geophysical Research, 106: 30795-30808, doi: 10.1029/2000JB000039.
[25]  Rüpke L H, Morgan J P, Hort M and Connolly J A D. 2004. Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223: 17?34, doi:10. 1016/j.epsl.2004.04.018.
[26]  Sleep N H, Meibom A, Fridriksson T, Coleman R G and Bird D K. 2004. H2-rich fluids from serpentinization: geochemical and biotic implications. Proceedings of the National Academy of Sciences, 101: 12818?12823.
[27]  Sun Shengsi. 2011. Seismic velocities, anisotropy and elastic properties of crystalline rocks and implications for interpretation of seismic data (Ph.D thesis). ?cole Polytechnique de Montréal: 210.
[28]  Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G and Yang Jingsui. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671?1677.
[29]  Ulmer P and Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858?861.
[30]  Wang Chunyong, Flesch L M, Silver P G, Chang Lijun and Chan W W. 2010. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36: 363?366.
[31]  Wang Qian and Ji Shaocheng. 2009. Poisson’s ratio of crystalline rocks as a function of hydrostatic confining pressure. Journal of Geophysical Research, 114, B09202, doi:10.1029/2008JB006167.
[32]  蔡克群, 陈从喜. 2000. 辽东古元古代镁质非金属矿床成矿系统研究. 地球科学――中国地质大学学报, 25(4): 346?351.
[33]  曹俊臣, 阚学敏, 温桂兰, 许荣旗. 1994. 岫玉的穆斯鲍尔谱、电子顺磁共振谱和红外光谱特征. 矿物学报, 14(3): 292?297.
[34]  常利军, 王椿镛, 丁志峰, 周民都, 杨建思, 徐智强, 姜旭东, 郑秀芬. 2008. 青藏高原东北缘上地幔各向异性研究. 地球物理学报, 51(2): 431?438.
[35]  董英君, 姜枚, 钱辉, 宿和平, 薛光琦. 2005. 青藏高原西部叶城-狮泉河地区岩石圈各向异性研究. 岩石矿物学杂志, 24(5): 418?424.
[36]  董英君, 薛光琦, 马开义, 姜枚. 1999. 阿尔金断裂系及邻区剪切波各向异性研究. 地球物理学进展, 14(4): 58?65.
[37]  Wang Qian, Ji Shaocheng, Sun Shengsi, Kern H, Salisbury M and Xu Zhiqin. 2011. Elastic and seismic properties of the Dabie-Sulu ultrahigh pressure metamorphic rocks. Acta Geologica Sinica, 86 (1): 20?37.
[38]  Wang Qian, Ji Shaocheng, Sun Shengsi and Marcotte D. 2009. Correlations between Poisson’s ratio and seismic wave velocities for some common rocks and sulfide ores. Tectonophysics, 469: 61?72.
[39]  Wang Qin, Ji Shaocheng, Salisbury M H, Xia Bin, Pan Mingbao and Xu Zhiqin. 2005a. Pressure dependence and anisotropy of P-wave velocities in ultrahigh- pressure metamorphic rocks from the Dabie-Sulu orogenic belt (China): Implications for seismic prop?erties of subducted slabs and origin of mantle reflec?tions. Tectonophysics, 398: 67?99.
[40]  Wang Qin, Ji Shaocheng, Salisbury M H, Xia Bin, Pan Mingbao and Xu Zhiqin. 2005b. Shear wave properties and Poisson’s ratios of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt: Implications for the crustal composition. Journal of Geophysical Research, 110, B08208, doi:10.1029/2004JB003435.
[41]  Watanabe T, Kasami H and Ohshima S. 2007. Compressional and shear wave velocities of serpentinized peridotites up to 200 MPa. Earth, Planets and Space, 59(4): 233?244.
[42]  Wicks F J and Whittaker E J W. 1977. Serpentine textures and serpentinization. Canadian Mineralogist, 15: 459?488.
[43]  李庆森, 聂奇英, 孙积玺. 1984. 岫玉成矿地质特征及矿床成因. 辽宁地质, (4): 321?329.
[44]  李士江, 初贵刚, 李忠满. 2003. 辽宁岫玉成矿规律探讨. 地质找矿论坛, 18(1): 7?10.
[45]  刘俊贤. 1993. 岫玉矿床地质特征. 矿产与地质, 36(7): 286?287.
[46]  刘志勇, 干福熹, 承焕生, 郭聚平. 2009. 辽宁岫岩玉的岩相结构和无损分析研究. 岩石学报, 25(5): 1281?1287.
[47]  马婷婷, 廖宗廷, 周征宇. 2008. 岫岩软玉矿床成因研究现状分析. 上海地质, 104(4): 64?66.
[48]  孙圣思, 嵇少丞. 2011. 大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制. 大地构造与成矿学, 35(4): 628?647.
[49]  王时麒, 董佩信. 2011. 岫岩玉的种类/矿床地质特征及成因. 地质与资源, 20(5): 321?331.
[50]  张良钜. 2002a. 辽宁岫岩玉的组成和性质的研究. 矿物学报, 22(2): 137?142.
[51]  张良钜. 2002b. 辽宁岫岩玉的特征及其质量研究. 岩石矿物学杂志, 21(增刊): 134?142.
[52]  Dragert H, Wang K and James T S. 2001. A silent slip event on the deeper cascadia subduction interface. Science, 292: 1526?1528.
[53]  Escartín J, Hirth G and Evans B. 1997. Nondilatant brittle deformation of serpentinites: Implications for Mohr- Coulomb theory and the strength of faults. Journal of Geophysical Research, 102(B2): 2897?2913.
[54]  Fu Yuanyuan V, Chen Y John, Li Aibing, Zhou Shiyong, Liang Xiaofeng, Ye Guoyang, Jin Ge, Jiang Mingming and Ning Jieyuan. 2008. Indian mantle corner flow at southern Tibet revealed by shear wave splitting measurements. Geophysical Research Letters, 35, L02308, doi:10.1029/2007GL031753.
[55]  Gao S S and Liu K H. 2009. Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau. Geochemistry Geophysics Geosystems, 10(2): 1?19, doi:10.1029/2008GC002227.
[56]  Huang W C, Ni J F, Tilmann F, Nelson D, Guo J R, Zhao W J, Mechie J, Kind R, Saul J, Rapine R and Hearn T M. 2000. Seismic polarization anisotropy beneath the central Tibetan Plateau. Journal of Geophysical Research, 105, B12, 27: 979?989.
[57]  Hyndman R D and Peacock S M. 2003. Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212: 417?432.
[58]  Ji Shaocheng, Li Awei, Wang Qian, Long Changxing, Wang Hongcai, Marcotte D and Salisbury M. 2013. Seismic velocity, anisotropy, and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones. Journal of Geophysical Research, 118: 1?23, doi:10.1002/jgrb50110.
[59]  Ji Shaocheng and Salisbury M H. 1993. Shear-wave velocities, anisotropy and splitting in high-grade mylonites. Tectonophysics, 221: 453?473.
[60]  Ji Shaocheng, Wang Qian, Marcotte D, Salisbury M H and Xu Zhiqin. 2007. P-wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure. Journal of Geophysical Research, 112, B09204, doi: 10.1029/2006JB004867.
[61]  Ji Shaocheng, Wang Qin and Xia Bin. 2002. Handbook of Seismic Properties of Minerals, Rocks and Ores. Montreal: Polytechnic International Press: 630.
[62]  Ji Shaocheng, Zhao Xiaoou and Francis D. 1994. Calibration of shear-wave splitting in subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska. Tectonophysics, 239: 1?28.
[63]  Jung H. 2011. Seismic anisotropy produced by serpentine in mantle wedge. Earth and Planetary Science Letters, 307: 535?543.
[64]  Kamiya S and Kobayashi Y. 2000. Seismological evidence for the existence of serpentinized wedge mantle. Geophysical Research Letters, 27(6): 819?822.
[65]  Katayama I, Hirauchi K I, Michibayashi K and Ando J I. 2009. Trench-parallel anisotropy produced by serpe?ntine deformation in the hydrated mantle wedge. Nature, 461: 1114?1118.
[66]  Kern H. 1993. P- and S-wave anisotropy and shear-wave splitting at pressure and temperature in possible mantle rocks and their relation to the rock fabric. Physics of the Earth and Planetary Interiors, 78: 245?256.
[67]  Makeyeva L I, Vinnik L P and Roecher S W. 1992. Shear- wave splitting and small-scale convection in the continental upper mantle. Nature, 358: 144?147.
[68]  Nishii A, Wallisa S R, Mizukamib T and Michibayashic K. 2011. Subduction related antigorite CPO patterns from forearc mantle in the Sanbagawa belt, southwest Japan. Journal of Structural Geology, 33(10): 1436?1445.
[69]  Saruwatari K, Ji Shaocheng, Long Changxing and Salisbury M H. 2001. Seismic anisotropies of mantle xenoliths and constraints on the upper mantle structures beneath the southern Canadian Cordillera. Tectonophysics, 339: 399?422.
[70]  Seno T. 2005. Variation of downdip limit of the seismogenic zone near the Japanese islands: Implications for the serpentinization mechanism of the forearc mantle wedge. Earth and Planetary Science Letters, 231(3?4): 249?262.
[71]  Sun Shengsi, Ji Shaocheng, Wang Qian, Xu Zhiqin, Salisbury M H and Long Changxing. 2012. Seismic velocities and anisotropy of core samples from the Chinese Continental Scientific Drilling borehole in the Sulu UHP terrane, eastern China. Journal of Geophysical Research, 117, B01206, doi:10.1029/ 2011JB008672.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133