全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

桂西二叠系喀斯特型铝土矿成矿物质来源的新认识:来自合山组碎屑岩地球化学证据

, PP. 181-196

Keywords: 那豆,铝土矿,碎屑岩,物源分析,锆石U-Pb年龄,Hf同位素

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为世界铝土矿的第二大矿床类型的喀斯特型铝土矿,由于成矿过程的复杂性,其成矿物质来源研究一直是国际学术界的难题。我国桂西喀斯特型铝土矿成矿母岩的来源,虽然经过了几十年的研究,但也一直未得到合理解释。本文对桂西那豆矿区合山组3个铝土矿和4个碎屑岩样品进行了系统的矿物学、主微量、碎屑锆石U-Pb定年及其微区原位Hf同位素分析,结果表明铝土矿和合山组碎屑岩可能来自同一个源区。碎屑岩和铝土矿中锆石U-Pb年龄谱均出现单一的高峰,峰值分别为253Ma(71%)和262Ma(78%),该年龄与合山组和茅口组之间的界限年龄(260.4±0.4Ma)很相近,暗示合山组铝土矿和碎屑岩的物源可能为二叠纪火山岩。矿物学和主微量元素特征显示源区岩石表现出酸性岩浆岩的特征,铝土矿锆石对应εHf(t)为?0.7~?26.7,排除了来自峨眉山大火成岩省的可能性。结合该区岩相古地理特征、Hf同位素特征和碎屑锆石的Th/Nb-Hf/Th和Th/U-Nb/Hf构造判别图解,推测桂西铝土矿的物源可能主要来自古特提斯二叠纪岩浆弧。这一研究不仅为该区争论不休的铝土矿物源问题提供了新证据,而且为研究世界上其他地区喀斯特型铝土矿提供了新的研究思路。

References

[1]  Brimhall G H, Lewis C J, Ague J J, Dietrich W E, Hampel J, Teague T and Rix P. 1988. Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature, 333: 819?824.
[2]  Cai J X and Zhang K J. 2009. A new model for the Indoc?hina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 467: 35?43.
[3]  Calagari A A and Abedini A. 2007. Geochemical investing?ations on Permo-Triassic bauxite horizon at Kanish?eeteh, east of Bukan, West-Azarbaidjan, Iran. Journal of Geochemical Exploration, 94: 1?18.
[4]  Chu N C, Taylor R N, Chavagnac V, Nesbitt R W, Boella R M, Milton J A, German C R, Bayon G and Burton K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An eval?ua?tion of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17: 1567?1574.
[5]  Chung S L and Jahn B M. 1995. Plume-lithosphere interac?tion in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23: 889?892.
[6]  Corfu F. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53: 469?500.
[7]  Deng J, Wang Q F, Yang S J, Liu X F and Zhang Q Z. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Const?r?aints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences, 37: 412?424.
[8]  Griffin W L, Wang X, Jackson S E, Pearson N J, O’Reilly S Y, Xu X S and Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237?269.
[9]  Gromet L P, Haskin L A, Korotev R L and Dymek R F. 1984. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48: 2469?2482.
[10]  Hoskin P W O and Ireland T R. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28: 627?630.
[11]  Karada? M M, Küpeli S, Ar?k F, Ayhan A, Zedef V and D?yen V. 2009. Rare earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya-Southern Turkey). Chemie der Erde- Geochemistry, 69: 143?159.
[12]  Knudsen T L. 2001. Contrasting provenance of Triassic/ Jurassic sediments in North Sea Rift: A single zircon (SIMS), Sm-Nd and trace element study. Chemical Geology, 171: 273?293.
[13]  Kuhlmann G, Boer P L, Pedersen R B and Wong T E. 2004. Provenance of Pliocene sediments and paleoenviron?mental changes in the southern North Sea region using Samarium-Neodymium (Sm/Nd) provenance ages and clay mineralogy. Sedimentary Geology, 171: 205?226.
[14]  Kurtz A C, Louis A D, Chadwick O A and Alfano M J. 2000. Refractory element mobility in volcanic soils. Geology, 28: 683?686.
[15]  Liu X F, Wang Q F, Deng J, Zhang Q Z, Sun S L and Meng J Y. 2010. Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China. Journal of Geochemical Exploration, 105: 137?152.
[16]  Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34?43.
[17]  MacLean W H and Barrett T J. 1993. Lithogeochemical techniques using immobile elements. Journal of Geochemical Exploration, 48: 109?133.
[18]  Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolu?tion and palaeogeography of East Asian crustal fragm?ents: The Korean Peninsula in context. Gondw?ana Research, 9: 24?26.
[19]  Pearce N J G, Perkins W T, Westgate J A, Gorton M P, Jackson S E, Neal C R and Chenery S P. 1997. A com?pil??a?ti?on of Nnew and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, 21: 115?144.
[20]  Pearce J A and Peat D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23: 251?285.
[21]  Poitrasson F, Chenery S and Shepherd T J. 2000. Electron microprobe and LA-ICP-MS study of monazite hydrot?he-rmal alteration: Implications for U-Th-Pb geochro?nology and nuclear ceramics. Geochimica et Cosmochi?mica Acta, 64: 3283?3297.
[22]  Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology,184: 123?138.
[23]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313?345.
[24]  Tayor J C. 1991. Computer programs for standardless quan?ti-tative analysis of minerals using the full powder diffraction profile. Powder Diffraction, 6: 2?9.
[25]  布申斯基. 1984. 铝土矿地质学. 王恩孚, 张汉英, 祝修怡, 译. 北京: 地质出版社: 61?152.
[26]  陈其英, 兰文波. 1991. 二叠系平果铝土矿成矿物源问题. 广西地质, 4: 43?49.
[27]  戴塔根, 龙永珍, 张起钻, 胡斌. 2003. 桂西某些铝土矿床稀土元素地球化学研究. 地质与勘探, 39(4): 1?5.
[28]  戴塔根, 龙永珍, 张起钻, 胡斌. 2007. 桂西铝多金属矿床地质地球化学特征与成矿机理. 地球科学与环境学报, 29(4): 345?350.
[29]  邓军. 2006. 桂西岩溶堆积型铝土矿矿床地质特征及成矿模式. 南方国土资源: 35?37.
[30]  广西地质矿产勘查局. 1985. 广西区域地质志. 北京: 地质出版社: 212?241.
[31]  广西地质研究所. 1982. 桂西铝土矿沉积特征. 广西地质科技, 2: 71?77.
[32]  范长智. 1995. 平果岩溶堆积型铝土矿及原生铝土矿矿床地质征及其成因. 矿山地质, 1: 18?26.
[33]  曹信禹. 1982. 试论桂西铝土矿的类型和成因. 广西地质科技, 1: 38?46.
[34]  李朋武, 高锐, 崔军文, 管烨. 2005. 西藏和云南三江地球特提斯洋盆演化历史的古地磁分析. 地球学报, 26(5): 387?404.
[35]  李朋武, 高锐, 管烨, 李秋生. 2009. 古特提斯洋的闭合时代的古地磁分析: 松潘复理石杂岩形成的构造背景. 地球学报, 30(1): 39?50.
[36]  李普涛, 张起钻. 2008. 广西靖西县三合铝土矿稀土元素地球化学研究. 矿产与地质, 22(6): 536?540.
[37]  李长民. 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与研究, 33(3): 161?174.
[38]  廖士范. 1998. 铝土矿矿床成因与类型(及亚型)划分的新意见. 贵州地质, 15(2): 139?144.
[39]  廖思福. 2000. 平果堆积型铝土矿地质特征及成因探讨. 广西地质, 13(4): 29?33.
[40]  刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 6: 552?558.
[41]  刘长龄, 覃志安. 1999. 论中国岩溶铝土矿的成因与生物和有机质的成矿作用. 地质找矿论丛, 14(4): 23?28.
[42]  刘长龄. 1992. 论铝土矿的成因学说. 河北地质学院学报, 15(2): 195?204.
[43]  涂湘林, 张红, 邓文峰, 凌明星, 梁华英, 刘颖, 孙卫东. 2011. RESolution激光剥蚀系统在微量元素原位微区分析中的应用. 地球化学, 40(1): 83?98.
[44]  万兵, 周文煊, 杨承恪. 1981. 广西铝土矿的物源探讨. 地质与勘探, 1: 25?32.
[45]  王力, 龙永珍, 彭省临. 2004. 桂西铝土矿成矿物质来源的地质地球化学分析. 桂林工学院学报, 24(1): 1?6.
[46]  杨宗永, 何斌. 2012. 南盘江盆地中三叠统碎屑锆石地质年代学: 物源及其地质意义. 大地构造与成矿学, 36(4): 581?596.
[47]  俞缙, 李普涛, 于航波. 2009. 靖西三合铝土矿铝矿物特征及成因机制分析. 东华理工大学学报, 32(4): 344?349.
[48]  Bardossy G. 1982. Karst bauxites. Bauxite deposits on carbo??nate rock. Elsevier, Amsterdam: 20?180.
[49]  Bhatia M R and Crook K A W. 1986. Trace element charact?e-ristics of graywackes and tectonic setting discrimin?ation of sedimentary basins. Contributions to Miner?alogy and Petrology, 92: 181?193.
[50]  Lance P Black, Sandra L Kamo,Charlotte M Allen, John N Aleinikoff, Donald W Davis, Russell J Korsch, Chris Foudoulis. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200: 155?170.
[51]  Bridgewater D, Scott D J, Balagansky V V, Timmerman M J, Marker M, Bushmin S A, Alexeyev N L and Daly J S. 2001. Age and provenance of early Precambrian metas?ed-imentary rocks in the Lapland-Kola Belt, Russia: Evidence from Pb and Nd isotopic data. Terra Nova, 13: 32?37.
[52]  Hao X L, Leung K, Wang R C, Sun W D and Li Y L. 2010. The geomicrobiology of bauxite deposits. Geoscience Frontiers, 1: 81?89.
[53]  Hawkesworth C J and Kemp A I S. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226: 144?162.
[54]  MacLean W H, Bonavia F F and Sanna G. 1997. Argillite debris converted to bauxite during karst weathering: Evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia. Mineralium Deposita, 32: 607?616.
[55]  Maksimovic Z and Pantó G. 1991. Contribution to the Geochemistry of the rare earth elements in the karst- bauxite deposits of Yugoslavia and Greece. Geoderma, 51: 93?109.
[56]  Mameli P, Mongelli G, Oggiano G and Dinelli E. 2007. Geolo-gical, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): Insights on conditions of formation and parental affinity. International Journal of Earth Sciences, 96: 887?902.
[57]  Mclennan S M, Hemming S, McDaniel D K and Hanson G N. 1993. Geochemical approaches to sedimentation, prov?en-ance and tectonics. Geological Society of America Special Paper, 284: 21?40.
[58]  Mearns E W. 1992. Samarium-neodymium isotopic constr?aints on the provenance of the Brent Group. Geological Society, 61: 213?225.
[59]  Mongelli G. 1993. REE and other trace elements in a granitic weathering profile from “Serre”, southern Italy. Chemical Geology, 103:17?25.
[60]  Morelli F, Cullers R, Laviano R and Mongelli G. 2000. Geochemistry and palaeoenvironmental signi?ance of upper Cretaceous clay-rich beds from the Peri-adriatic Apulia carbonate platform, southern Italy. Periodico di Mineralogia, 69: 165?183.
[61]  Panahi A, Young G M and Rainbird R H. 2000. Behavior of major and trace elements (including REE) during Paleop?r?o?-terozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochimica et Cosmochimica Acta, 64: 2199?2220.
[62]  Veevers J J and Tewari R C. 1995. Permian-Carboniferous and Permian-Triassic magmatism in the rift zone bordering the Tethyan margin of southern Pangea. Geology, 23: 467?470.
[63]  Wu F Y, Yang Y H, Xie L W, Yang J H and Xu P. 2006. Hf isoto?pic compositions of the standard zircons and bad?del-eyites used in U-Pb geochronology. Chemical Geol?ogy, 234: 105?126.
[64]  Wu G, Zhong D, Zhang Q and Ji J J. 1999. Babu-Phu Ngu ophiolites: A geological record of paleotethyan ocean bordering China and Vietnam. Gondwana Research, 2: 554?557.
[65]  Xu Y G, Chung S L, Jahn B M and Wu G Y. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan ?ood basalts in southwest?tern China. Lithos, 58: 145?168.
[66]  Xu Y G, Luo Z Y, Huang X L, Xie L W and Shi Y R. 2008. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume. Geochimica et Cosmochimica Acta, 72: 3084?3104.
[67]  Yang J H, Cawood P A, Du Y S, Huang H, Huang H W and Tao P. 2012. Large igneous province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China. Sedimentary Geology, 261?262: 120?131.
[68]  Zhong Y T, He B and Xu Y G. 2013. Mineralogy and geoch-emistry of claystones from the Guadalupian? Lopingian boundary at Penglaitan, South China: Insig?hts into the pre-Lopingian geological events. Journal of Asian Earth Sciences, 62: 438?46

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133