全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西盟地区奥陶纪花岗片麻岩的锆石U-Pb年代学、Hf同位素组成特征及其大地构造意义

DOI: 10.16539/j.ddgzyckx.2015.03.009, PP. 470-480

Keywords: 花岗片麻岩,奥陶纪,锆石U-Pb年代学,Hf同位素,西盟,冈瓦纳大陆

Full-Text   Cite this paper   Add to My Lib

Abstract:

对云南西部侵入于原西盟群帕可组的花岗片麻岩开展主量元素、锆石U-Pb年龄及原位Hf同位素组成分析。岩石地球化学特征显示其为高钾钙碱性强过铝质S型花岗岩,两件代表性样品分别给出了461.4±2.5Ma和461.5±3.3Ma的206Pb/238U加权平均年龄,相应的锆石εHf(t)值分别介于?6.45~?1.90和?5.60~?1.44之间,二阶段模式年龄(tDM2)分别为1.57~1.86Ga和1.54~1.90Ga。这些数据表明西盟地区侵入于原西盟群帕可组内的花岗片麻岩并非前人所认为的中元古代岩石,而是中奥陶世产物,其源岩可能是元古宙变质杂砂岩。结合前人研究成果,作者推测西盟地区早古生代花岗片麻岩是环冈瓦纳大陆边缘安第斯型造山作用的产物。

References

[1]  孔会磊, 董国臣, 莫宣学, 赵志丹, 朱弟成, 王硕, 李荣, 王乔林. 2012. 滇西三江地区临沧花岗岩的岩石成因: 地球化学、锆石U-Pb年代学及Hf同位素约束. 岩石学报, 28(5): 1438?1452.
[2]  李献华, 刘颖, 涂湘林, 胡光黔, 曾文. 2002. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定: 酸溶与碱熔分解样品方法的对比. 地球化学, 31(3): 289?294.
[3]  李再会, 林仕良, 丛峰, 谢韬, 邹光富. 2012a. 滇西高黎贡山群变质岩的锆石年龄及其构造意义. 岩石学报, 28(5): 1529?1541.
[4]  李再会, 王立全, 林仕良, 丛峰, 谢韬, 邹光富. 2012b. 滇西高黎贡剪切带内花岗质糜棱岩LA-ICP-MS锆石U-Pb年龄及其构造意义. 地质通报, 31(8): 1287? 1295.
[5]  戚学祥, 李化启, 李天福, 蔡智慧, 于春林. 2010. 东喜马拉雅构造结南迦巴瓦群高压麻粒岩中含石榴石花岗岩脉锆石SHRMP U-Pb定年及其与折返作用. 岩石学报, 26(3): 975?984.
[6]  时超, 李荣社, 何世平, 王超, 潘术娟, 刘银, 辜平阳. 2010. 藏南亚东地区片麻状含石榴子石黑云母花岗闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义. 地质通报, 29(12): 1745?1753.
[7]  王保弟, 王立全, 潘桂棠, 尹福光, 王冬兵, 唐渊. 2013. 昌宁?孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义. 科学通报, 58(4): 344?354.
[8]  王铠元. 1996. 西南三江构造带及扬子西缘前寒武纪基底岩群与构造演化. 云南地质, 15(2): 138?148.
[9]  王晓先, 张进江, 杨雄英, 张波. 2011. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义. 地学前缘, 18(2): 127?139.
[10]  吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185?220.
[11]  许志琴, 杨经绥, 梁凤华, 戚学祥, 刘福来, 曾令森, 刘敦一, 李海兵, 吴才来, 史仁灯, 陈松永. 2005. 喜马拉雅地体的泛非?早古生代造山事件年龄记录. 岩石学报, 21(1): 1?12.
[12]  许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度?亚洲碰撞大地构造. 地质学报, 85(1): 1?33.
[13]  杨学俊, 贾小川, 熊昌利, 白宪洲, 黄柏鑫, 罗改, 杨朝碧. 2012. 滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 31(2?3): 264?276.
[14]  杨岳清, 王文瑛. 2002. 缅甸完冷锡矿――一种值得重视的沉积变质型锡矿床. 矿床地质, 21(增刊): 511?514.
[15]  云南省地质矿产局. 1982. 云南省区域地质志. 北京: 地质出版社: 1?728.
[16]  张传恒, 王自强, 李景平, 宋茂双. 1997. 滇西西盟地区前泥盆纪变质岩系的变形构造格架. 中国区域地质, 16(2): 171?179.
[17]  张泽明, 王金丽, 沈昆, 石超. 2008. 环东冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据. 岩石学报, 24(7): 1627?1637.
[18]  赵章明, 佘华, 冷崇林, 张志友, 刘仪来, 徐荣, 洪雨. 1986. 1∶200000区域地质调查报告(沧源幅?上班老幅): 1?319.
[19]  Chen F K, Li X H, Wang X L, Li Q L and Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 96: 1179?1194.
[20]  DeCelles P G, Gehrels G E, Quade J, Ojha T P, Kapp P A and Upreti B N. 1998. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. Geological Society of Amercian Bulletin, 110: 2?21.
[21]  DeCelles P G, Gehrels G E, Quade J, LaReau B and Spurlin M. 2000. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, 288: 497?499.
[22]  Dong X, Zhang Z M and Santosh M. 2010. Zircon U-Pb chronology of the Nyingtri group, southern Lhasa terrane, Tibetan plateau: Implications for Grenvillian and Pan-African provenance and Mesozoic-Cenozoic metamorphism. The Journal of Geology, 118: 677? 690.
[23]  Gansser A. 1964. The geology of the Himalays. London: Wiley Interscience: 288.
[24]  Gehrels G E, DeCelles P G, Ojha T P and Upreti B N. 2006. Geological and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya. Journal of Asian Earth Sciences, 28: 385?408.
[25]  Godin L, Parrish R R, Brown R L and Hodges K V. 2001. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U-Pb geochronology and 40Ar/39Ar thermochronology. Tectonics, 20: 729?747.
[26]  Hoffman P F, Kaufman A J, Halverson G L and Schrag D P. 1998. A Neoproterozoic snowball earth. Science, 281: 1341?1346.
[27]  Liu S, Hu R Z, Gao S, Feng C X, Huang Z L, Lai S C, Yuan H L, Liu X M, Coulson I M, Feng G Y, Wang T and Qi Y Q. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China. Journal of Asian Earth Sciences, 36: 168?182.
[28]  Liu W C, Zhou Z G, Zhang X X and Zhao X G. 2006. SHRIMP zircon geochronological constraints on a Pan-African orogeny in the Yadong Area, Southern Tibet. Goldschmidt Conference Abstracts: A365?A365.
[29]  Liu Y, Siebel W, Massonne H J and Xiao X C. 2007. Geochronological and Petrological Constraints for Tectonic Evolution of the Central Greater Himalayan Sequence in the Kharta Area, South Tibet. Journal of Geology, 115: 215?230.
[30]  Ludwig K. 2001. SQUID 1.12: A User''s Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication: 1?22.
[31]  Machado N and Simonetti A. 2001. U-Pb dating and Hf isotopic composition of zircon by Laser Ablation ICPMS in the Earth Sciences: Principles and Applications, Short Course. Mineralogical Association of Canada, 29: 121?146.
[32]  Meert J. 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362: 1?40.
[33]  Miller C, Th?ni M, Frank W, Grasemann B, Kl?tzli U, Guntli P and Draganits E. 2001. The Palaeozoic magmatic event in the Northwest Himalaya, India: Source, tectonic setting and age of emplacement. Geological Magazine, 138: 237?251.
[34]  Pati?o Douce A E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25: 743?746.
[35]  Pati?o Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geology Society, London, Special Publications, 168: 55?75.
[36]  Wang X X, Zhang J J, Santosh M, Liu J, Yan S Y and Guo L. 2012. Andean-type orogeny in the Himalayas of south Tibet: Implication for early Paleozoic tectonics along the Indian margin of Gondwana. Lithos, 154: 248?262.
[37]  Wu H R, Boulter C A, Ke B J, Stow D A V and Wang Z C. 1995. The Changning-Menglian suture zone; A segment of the major Cathaysian-Gondwana divide in Southeast Asia. Tectonophysics, 242: 267?280.
[38]  Xia X P, Sun M, Geng, H Y, Sun Y L, Wang Y J and Zhao G C. 2011. Quasi-simultaneous determination of U-Pb and Hf isotope compositions of zircon by excimer laser-ablation multiple-collector ICPMS. Journal of Analytical Atomic Spectrometry, 26: 1868?1871.
[39]  Xu Y G, Yang Q J, Lan J B, Huang X L, Luo Z Y, Shi Y R and Xie L W. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengchong-Yingjiang area, western Yunnan: Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, 53: 151?175.
[40]  Zhang Z M, Dong X, Santosh M, Liu F, Wang W, Yiu F, He Z Y and Shen K. 2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the India Craton. Gondwana Research, 21: 123?137.
[41]  Zhu D C, Zhao Z D, Niu Y L, Yildirim D, Wang Q, Ji W H, Dong G C, Sui Q L, Liu Y S, Yuan H L and Mo X X. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto- Tethyan margin. Chemical Geology, 328: 290?308.
[42]  陈福坤, 李秋立, 王秀丽, 李向辉. 2006. 滇西腾冲地块东侧混合岩锆石年龄和Sr-Nd-Hf同位素组成. 岩石学报, 22(2): 439?448.
[43]  董昕, 张泽明, 王金丽, 赵国春, 刘峰, 王维, 于飞. 2009. 青藏高原拉萨地体南部林芝岩群的物质来源与形成年代: 岩石学与锆石U-Pb年代学. 岩石学报, 25(7): 1678?1694.
[44]  范承钧. 1982. 滇西区域地质特征. 云南地质, 4(4): 323?336.
[45]  钟大赉. 1998. 川滇西部古特提斯造山带. 北京: 科学出版社: 1?231.
[46]  朱弟成, 赵志丹, 牛耀玲, 王青, Yildirim D, 董国臣, 莫宣学. 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1?15.
[47]  Bhanot V B, Bhandari A K, Singh V P and Kansal A K. 1979. Geochronological and geological studies on a granite of Higher Himalaya, northeast of Manikaran, Himachal Pradesh. Journal of the Geological Society of India, 20: 90?94.
[48]  Bonin B, Azzouni-Sekkal A, Bussy F and Ferrag S. 1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings. Lithos, 45: 45?70.
[49]  Cawood P A and Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Science Reviews, 82: 217?256.
[50]  Cawood P A, Johnson M R W and Nemchin A A. 2007. Early Paleozoic orogenesis along the India margin of Gondwana: Tectonic response to Gondwana assembly. Earth and Planetary Science Letters, 255: 70?84.
[51]  Chappell B W. 1999. Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46: 535?551.
[52]  Song S G, Ji J Q, Wei C J, Su L, Zheng Y D, Song B and Zhang L F. 2007. Early Paleozoic granite in Nujiang River of northwest Yunnan in southwestern China and its tectonic implication. Chinese Science Bulletin, 52: 2402?2406.
[53]  Song S G, Niu Y L, Wei C J, Ji J Q and Su L. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent: An eastern extension of the Lhasa Block. Lithos, 120: 327?346.
[54]  Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45: 29?44.
[55]  Visonà D, Rubatto D and Villa I M. 2010. The mafic rocks of Shao La (Kharta, S. Tibet): Ordovician basaltic magmatism in the greater himalayan crystallines of central-eastern Himalaya. Journal of Asian Earth Sciences, 38: 14?25.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133