全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

成矿流体动力学与大地构造环境的关系

DOI: 10.16539/j.ddgzyckx.2015.03.004, PP. 402-412

Keywords: 大地构造环境,成矿学,流体动力学,流体流动,热液矿床

Full-Text   Cite this paper   Add to My Lib

Abstract:

热液矿床的形成需要大量流体,而流体的运移需要包括地势差、岩石变形、热梯度及热异常等多种驱动力。这些流体驱动力与构造环境及过程有密切关系。流体压力状态和热场及地势差的组合决定了压性构造环境流体以向上运动为主,如造山型成矿系统,而张性构造环境流体以对流为主,如VMS和SEDEX成矿系统。造山作用造成的地势差及水平挤压作用所产生的超压可以驱动流体侧向迁移数百公里,如MVT成矿系统。但是,具体的成矿流体动力学过程比较复杂,且随构造演化而变化。在经历过多个大地构造演化阶段的地区,如地洼区,老的成矿流体动力系统不断被新的系统叠加或取代;新的构造单元需要来自地幔的流体源补充才有利于成矿。成矿学研究的是成矿作用与大地构造的关系,而流体动力学系统与大地构造环境密切相关,因此,成矿流体动力学应成为成矿学的一个重要组成部分。

References

[1]  Bethke C M. 1985. A numerical model of compaction-driven groundwater flow and heat transfer and its application to paleohydrology of intracratonic sedimentary basins. Journal of Geophysical Research, 90: 6817?6828.
[2]  Bethke C M and Marshak S. 1990. Brine migration across North America ? the plate tectonics of groundwater. Annual Review of Earth and Planetary Sciences, 18: 287?315.
[3]  Burnham C W. 1997. Magmas and hydrothermal fluids // Barnes H L. Geochemistry of Hydrothermal Ore Deposits (Third edition). John Wiley & Sons, New York: 63?123.
[4]  Cathles L M. 1981. Fluid flow and genesis of hydrothermal ore deposits. Economic Geology 75th Anniversary Volume: 424?457.
[5]  Chen G D. 1978. Studies of metallogenic structures. Beijing: Geological Publishing House: 413 (in Chinese).
[6]  Chen G D. l982. Polygenetic compound ore deposits and their origin in the context of crustal evolution regularities. Geotectonica et Metallogenia, 6(1): 1?32.
[7]  Chi G, Kontak D J and Williams-Jones A E. 1998. Fluid composition and thermal regime during base-metal mineralization in the lower Windsor Group, Nova Scotia. Economic Geology, 93: 883?895.
[8]  Chi G, Qing H, Xue C and Zeng R. 2006. Modeling of fluid pressure evolution related to sediment loading and thrust faulting in the Lanping basin?Implications for the formation of the Jinding Zn-Pb deposit, Yunnan, China. Journal of Geochemical Exploration, 89: 57?60.
[9]  Chi G, Xue C, Lai J and Qing H. 2007. Sand injection and liquefaction structures in the Jinding Zn-Pb deposit, Yunnan, China: indicators of an overpressured fluid system and implications for mineralization. Economic Geology, 102: 739?743.
[10]  Chi G and Xue C. 2011. An overview of hydrodynamic studies of mineralization. Geoscience Frontiers, 2: 423?438.
[11]  Chi G and Xue C. 2014. Hydrodynamic regime as a major control on localization of uranium mineralization in sedimentary basins. Science China: Earth Sciences, 57: 2928?2933.
[12]  Fournier R O. 1998. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environments. Economic Geology, 94: 1193?1211.
[13]  Franklin J M, Gibson H L, Jonasson I R and Galley A G. 2005. Volcanogenic massive sulfide deposits. Economic Geology 100th Anniversary Volume: 523?560.
[14]  Freeze R A and Cherry J A. 1979. Groundwater. Prentice Hall, Englewood Cliffs, New Jersey: 604.
[15]  Fyfe W S, Price N J and Thompson A B. 1978. Fluids in the earth’s crust. Amsterdam: Elsevier: 383.
[16]  Fyfe W S. 1994. The water inventory of the earth: Fluids and tectonics. Geological Society, London, Special Publications, 78: 1?7.
[17]  Garven G. 1995. Continental-scale groundwater flow and geologic processes. Annual Review of Earth and Planetary Sciences, 23: 89?117.
[18]  Ingebritsen S, Sanford W and Neuzil C. 2006. Groundwater in Geologic Processes (Second edition). Cambridge University Press: 536.
[19]  Liu Y, Chi G, Bethune K M and Dube B. 2011. Fluid dynamics and fluid-structural relationships in the Red Lake mine trend, Red Lake greenstone belt, Ontario, Canada. Geofluids, 11: 260?279.
[20]  Mao J W, Cheng Y B, Chen M H and Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48: 267?294.
[21]  Matthai S K, Heinrich C A and Driesner T. 2004. Is the Mount Isa copper deposit the product of forced brine convection in the footwall of a major reverse fault? Geology, 32: 357?360.
[22]  Michell A H G and Garson M S. 1981. Mineral deposits and global tectonic settings. London: Academic Press: 405.
[23]  Norton D and Cathles L M. 1979. Thermal aspects of ore deposition // Barnes H L. Geochemistry of Hydrothermal Ore Deposits (Second edition). New York: John Wiley & Sons: 611?631.
[24]  Oliver J. 1986. Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena. Geology, 14: 99?102.
[25]  Oliver N H S, McLellen J G, Hobbs B E, Cleverley J S, Ord A and Feltrin L. 2006. Numerical models of extensional deformation, heat transfer and fluid flow across basement-cover interfaces during basin-related mineralization. Economic Geology, 101: 1?31.
[26]  Parmentier E M and Spooner E T C. 1978. A theoretical study of hydrothermal convection and the origin of the ophiolitic sulfide ore deposits of Cyprus. Earth and Planetary Science Letters, 40: 33?44.
[27]  Ribando R J, Torrance K E and Turcotte D L. 1976. Numerical models for hydrothermal circulation in the oceanic crust. Journal of Geophysical Research, 81: 3007?3012.
[28]  Sangster D F, Nowlan G S and McCracken A D. 1994. Thermal comparison of Mississippi Valley-type lead-zinc deposits and their host rocks using fluid inclusion and conodont color alteration index data. Economic Geology, 89: 493?514.
[29]  Sibson R H. 1994. Crustal stress, faulting and fluid flow. Geological Society, London, Special Publications, 78: 69?84.
[30]  Sibson R H. 2004. Controls on maximum fluid overpressure defining conditions for mesozonal mineralisation. Journal of Structural Geology, 26: 1127?1136.
[31]  Sibson R H, Robert F and Poulsen K H. 1988. High angle reverse faults, fluid pressure cycling, and mesothermal gold-quartz deposits. Geology, 16: 551?555.
[32]  Yang K and Scott S D. 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature, 383: 420?423.
[33]  Zhang Y H, Sorjonen-Ward P, Ord A and Southgate P N. 2006. Fluid flow during deformation associated with structural closure of the Isa Superbasin at 1575 Ma in the Central and Northern Lawn Hill Platform, Northern Australia. Economic Geology, 101: 1293?1312.
[34]  Cathles L M. 2007. Changes in sub-water table fluid flow at the end of the Proterozoic and its implications for gas pulsars and MVT lead-zinc deposits. Geofluids, 7: 209?226.
[35]  Cathles L M and Adams J J. 2005. Fluid flow and petroleum and mineral resources in the upper (<20 km) continental crust. Economic Geology 100th Anniversary Volume: 77?110.
[36]  Cathles L M and Smith A T. 1983. Thermal constraints on the formation of Mississippi Valley-type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Economic Geology, 78: 983?1002.
[37]  Cerny P, Blevin P L, Cuney M and London D. 2005. Granite-related ore deposits. Economic Geology 100th Anniversary Volume: 337?370.
[38]  Chen G D. 1956. Examples of reactivated platform in China with special reference to the Cathaysia. Acta Geologica Sinica, 36: 239?272 (in Chinese).
[39]  Chi G and Savard M M. 1998. Basinal fluid flow models related to Zn-Pb mineralization in the southern margin of the Maritimes Basin, eastern Canada. Economic Geology, 93: 896?910.
[40]  Chi G and Zhou Y. 2012. Hydrodynamic constraints on relationships between different types of U deposits in southern China. Mineralogical Magazine, Goldschmidt 2012 Conference Abstracts: 1573.
[41]  Cline J S, Hofstra A H, Muntean J H, Tosdal R M and Hickey K A. 2005. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models. Economic Geology 100th Anniversary Volume: 451?484.
[42]  Connolly J A D and Podladchikov Y Y. 2004. Fluid flow in compressive tectonic settings: Implications for midcrustal seismic reflectors and downward fluid migration. Journal of Geophysical Research, 109(B04201): 1?12.
[43]  Cox S F. 2005. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. Economic Geology 100th Anniversary Volume: 39?76.
[44]  Cui T, Yang J W and Samson I M. 2012. Tectonic deformation and fluid flow: Implications for the formation of unconformity-related uranium deposits. Economic Geology, 107: 147?163.
[45]  Deming D. 1994. Fluid flow and heat transport in the upper continental crust. Geological Society, London, Special Publications, 78: 27?42.
[46]  Deming D and Nunn J A. 1991. Numerical simulations of brine migration by topographically driven recharge. Journal of Geophysical Research, 96: 2485?2499.
[47]  Domenico P A and Schwartz F W. 1998. Physical and chemical hydrogeology (second edition). New York: John Wiley & Sons: 506.
[48]  Garven G, Ge S, Person G M and Sverjensky D A. 1993. Genesis of stratabound ore deposits in the mid-continent basins of North America. 1. The role of regional groundwater flow. American Journal of Science, 293: 497?568.
[49]  Ge S and Garven G. 1992. Hydromechanical modeling of tectonically driven groundwater flow with application to the Arkoma foreland basin. Journal of Geophysical Research, 97: 9119?9144.
[50]  Goldfarb R J, Baker T, Dube B, Groves D I, Hart C J R and Gosselin P. 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology 100th Anniversary Volume: 407?450.
[51]  Groves D I, Goldfarb R J, Robert F and Hart C J R. 2003. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98: 1?29.
[52]  Hanson R B. 1997. Hydrodynamics of regional metamorphism due to continental collision. Economic Geology, 92: 880?891.
[53]  Hu R Z, Bi X W, Zhou M F, Peng J T, Su W C, Liu S and Qi H W. 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103: 583?598.
[54]  Hubbert M K. 1940. The theory of ground-water motion. Journal of Geology, 48: 785?944.
[55]  Ingebritsen S E and Appold M S. 2012. The physical hydrogeology of ore deposits. Economic Geology, 107: 559?584.
[56]  Kaur P and Chaudhri N. 2014. Metallogeny associated with the Palaeo-Mesoproterozoic Columbia supercontinent cycle: A synthesis of major metallic deposits. Ore Geology Reviews, 56: 415?422.
[57]  Kerrich R, Goldfarb R J and Richards J P. 2005. Metallogenic provinces in an evolving geodynamic framework. Economic Geology 100th Anniversary Volume: 1097?1136.
[58]  Leach D L and Rowan E L. 1986. Genetic link between Ouachita foldbelt tectonism and the Mississippi Valley-type lead-zinc deposits of the Ozarks. Geology, 14: 931?935.
[59]  Leach D L, Sangster D F, Kelley K D, Large R R, Garven G, Allen C R, Gutzmer J and Walters S. 2005. Sediment- hosted lead-zinc deposits: A global perspective. Economic Geology 100th Anniversary Volume: 561?607.
[60]  Li S R and Santosh M. 2014. Metallogeny and craton destruction: Records from the North China Craton. Ore Geology Reviews, 56: 376?414.
[61]  Lin G, Zhao C B, Wang Y J, Hobbs B E and Gong J W. 2003. The numerical modelling of the reactive fluids mixing and the dynamic equilibrium of mineralization. Acta Petrologica Sinica, 19: 275?282 (in Chinese).
[62]  Lin G, Zhou Y, Wei X R and Zhao C B. 2006. Structural controls on fluid flow and related mineralization in the Xiangshan uranium deposit, Southern China. Journal of Geochemical Exploration, 89: 231?234.
[63]  Sawkins F J. 1990. Metal deposits in relation to plate tectonics. Berlin: Springer-Verlag: 461.
[64]  Seedorff E, Dilles J H, Proffett Jr J M, Einaudi M T, Zurcher L, Stavast W J A, Johnson D A and Barton M. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100th Anniversary Volume: 251?298.
[65]  Swarbrick R E, Osborne M J and Yardley G S. 2002. Comparison of overpressure magnitude resulting from the main generating mechanisms // Huffman A R and Bowers G L. Pressure Regimes in Sedimentary Basins and Their Prediction. AAPG Memoir, 76: 1?12.
[66]  Turcotte D L and Schubert G. 2002. Geodynamics (second edition). New York: Cambridge University Press: 848.
[67]  Yang J, Large R, Bull S and Scott D. 2006. Basin-scale numerical modeling to test the role of buoyancy driven fluid flow and heat transport in the formation of stratiform Zn-Pb-Ag deposits in the northern Mt Isa basin. Economic Geology, 101: 1275?1292.
[68]  Zhao C B, Hobbs B E and Ord A. 2008. Convective and advective heat transfer in geological systems. Berlin: Springer: 229.
[69]  Zhao C B, Reid L B and Regenauer-Lieb K. 2012. Some fundamental issues in computational hydrodynamics of mineralization: A review. Journal of Geochemical Exploration, 112: 21?34.
[70]  Zhu J J, Li Z A, Lin G, Zeng Q S, Zhou Y, Yi J, Gong G L and Chen G H. 2014. Numerical simulation of mylonitization and structural controls on fluid flow and mineralization of the Hetai gold deposit, west Guangdong, China. Geofluids, 14: 221?233.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133