全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西藏尼雄铁矿成矿花岗岩成因及其对成矿构造背景的启示

, PP. 286-299

Keywords: 岩石地球化学,Sr-Nd-Pb同位素,锆石U-Pb年龄,尼雄铁矿,西藏

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文分析了西藏尼雄铁矿与成矿有关花岗闪长岩的主量元素、微量元素、稀土元素及Sr-Nd-Pb同位素特征,并做了锆石LA-ICPMSU-Pb年龄测定。岩石地球化学分析结果显示样品为亚铝质中钾?高钾钙碱性岩系列,属I-型花岗岩。地球化学组成上其富集大离子亲石元素(LILE)Rb、Ba、Sr、Th、U、K、Pb,亏损高场强元素(HFSE)Nb、Ta、Ti,具有典型的岛弧岩浆作用的特征;稀土元素球粒陨石标准化图解表现为富集轻稀土的右倾型式(LREE/HREE=5.67~8.37),无Eu异常,显示活动大陆边缘岩浆岩的稀土配分特征。岩体ISr为0.707625~0.710997,εNd(t)为?6.6~?8.7,206Pb/204Pb,207Pb/204Pb,208Pb/204Pb比值分别为18.786~18.955、15.694~15.726、39.355~39.676,显示出富集地幔特征(EMⅡ),表明地壳组分对岩浆生成有重要影响。所测岩体的锆石206Pb/238U加权平均年龄为112.09±0.54Ma(MSWD=0.45),表明尼雄花岗岩体形成于早白垩世晚期。综合分析班公湖?怒江中特提斯洋和雅鲁藏布江新特提斯洋的演化历史,作者认为尼雄铁矿是早白垩世雅鲁藏布江洋壳板块向北侧拉萨地块之下俯冲的构造背景下的产物。而成矿岩体主要是俯冲组分(流体和熔融)对地幔楔交代改造的结果,是地幔岩浆底侵引起下地壳物质部分熔融,两种岩浆混合而形成的。

References

[1]  曹圣华. 2012. 西藏尼雄式铁矿及冈底斯中部铁铜矿区域成矿规律研究. 北京: 中国地质大学博士论文.
[2]  曹圣华, 陈毓川, 楼法生. 2010. 西藏措勤县尼雄矽卡岩型铁(铜)矿田特征与找矿远景分析. 矿床地质, 29(S1): 65?66.
[3]  曹圣华, 邓世权, 肖志坚, 廖六根. 2006. 班公湖?怒江结合带西段中特提斯多岛弧构造演化. 沉积与特提斯地质, 26 (4): 25?32.
[4]  曹圣华, 李德威, 余忠珍, 袁建芽, 吴旭铃, 胡为正. 2007. 西藏冈底斯尼雄超大型富铁矿的成矿地质特征. 大地构造与成矿学, 31(3): 328?334.
[5]  侯增谦, 曲晓明, 王淑贤, 高永丰, 杜安道, 黄卫. 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿 Re-Os 年龄: 成矿作用时限与动力学背景应用. 中国科学(D辑), 33(7): 609?618.
[6]  李光明, 秦克章, 陈雷, 陈金标, 范新, 琚宜太. 2011. 冈底斯东段山南地区第三纪矽卡岩?斑岩Cu-Mo-W(Au)多金属矿床勘查模型及深部找矿意义. 地质与勘探, 47(1): 20?30.
[7]  李国彪, 万晓樵, 刘文灿, 梁定益, H.Yun. 2004. 雅鲁藏布江缝合带南侧古近纪海相地层的发现及其构造意义. 中国科学(D辑), 34(3): 228?240.
[8]  刘志飞, 王成善, 李祥辉. 2000. 西藏南部雅鲁藏布江缝合带的沉积?构造演化. 同济大学学报: 自然科学版, 28(5): 010.
[9]  潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521?533.
[10]  曲晓明, 侯增谦, 黄卫. 2001. 冈底斯斑岩铜矿(化)带: 西藏第二条“玉龙”铜矿带? 矿床地质, 20(4): 355?366.
[11]  曲晓明, 辛洪波, 杜德道, 陈华. 2012. 西藏班公湖?怒江缝合带中段碰撞后A?型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(1): 1?14.
[12]  曲晓明, 辛洪波, 杜德道, 陈华. 2013. 西藏班公湖?怒江缝合带中段 A?型花岗岩的岩浆源区与板片断离. 地质学报, 87(6): 759?772.
[13]  佘宏全, 丰成友, 张德全, 潘桂棠, 李光明. 2005. 西藏冈底斯中东段矽卡岩铜?铅?锌多金属矿床特征及成矿远景分析. 矿床地质, 24(5): 904-916.
[14]  王乐, 何政伟, 刘婷婷, 倪忠云, 高慧, 蔡柯柯, 张船红, 吴华. 2012. 西藏尼雄铜铁多金属成矿带遥感找矿模式与找矿方向. 现代地质, 26(3): 489?497.
[15]  吴旭铃, 陈振华. 2005. 西藏尼雄岩体岩石地球化学特征及其成因探讨. 中国地质, 32(1): 122?127.
[16]  吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约. 科学通报, 49(16): 1589?1604.
[17]  张连昌, 陈志广, 周新华, 英基丰, 王非, 张玉涛. 2007. 大兴安岭根河地区早白垩世火山岩深部源区与构造?岩浆演化: Sr-Nd-Pb-Hf同位素地球化学制约. 岩石学报, 23(11): 2823?2835.
[18]  张万平, 袁四化, 刘伟. 2011. 青藏高原南部雅鲁藏布江蛇绿岩带的时空分布特征及地质意义. 西北地质, 44(1): 1?9.
[19]  张宇, 邵拥军, 刘忠法, 周鑫, 郑明泓. 2013. 安徽铜陵新桥铜硫铁矿床地球化学特征及成因分析. 中国有色金属学报, 23(6): 1666?1680.
[20]  朱弟成, 莫宣学, 赵志丹, 牛耀龄, 潘桂棠, 王立全, 廖忠礼. 2009. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化: 新观点. 地学前缘, 16(2): 1?20.
[21]  朱弟成, 赵志丹, 牛耀龄, 王青, Yildirim DILEK, 董国臣, 莫宣学. 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1?15.
[22]  Batchelor R A and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1): 43?55.
[23]  Boztug D, Harlavan Y, Arehart G B, Sat?r M and Avc? N. 2007. K-Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divri?i?Sivas region, eastern-central Anatolia, Turkey. Lithos, 97(1): 193?218.
[24]  Collins W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189?200.
[25]  DePaolo D J. 1981. Nd isotopic studies: Some new perspectives on earth structure and evolution. Eos, Transactions American Geophysical Union, 62(14): 137.
[26]  DePaolo D J and Wasserburg G J. 1979. Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochimica et Cosmochimica Acta, 43(4): 615?627.
[27]  Garzanti E, Le Fort P and Sciunnach D. 1999. First report of Lower Permian basalts in South Tibet: Tholeiitic magmatism during break-up and incipient opening of Neotethys. Journal of Asian Earth Sciences, 17(4): 533?546.
[28]  Hart S R. 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90(3): 273?296.
[29]  Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297?314.
[30]  Hofmann A W, Jochum K P, Seufert M and White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1): 33?45.
[31]  Kapp P, Murphy M A, Yin A, Harrison T M, Ding L, and Guo J. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, doi: 10.1029/2001TC001332.
[32]  Kepezhinskas P, Mcdermott F, Defant M J, Hochstaedter A, Drummond M S, Hawkesworth C J, Koloskov A, Maury R C and Bellon H. 1997. Trace element and Sr-Nd-Pb isotopicconstraints on a three-component model of Kamchatka arc petrogenesis. Geochimica et Cosmochim Acta, 61(3): 577?600.
[33]  Schmidberger S S and Hegner E. 1999. Geochemistry and isotope systematics of calc-alkaline volcanic rocks from the Saar-Nahe basin (SW Germany)-implications for Late-Variscan orogenic development. Contributions to Mineralogy and Petrology, 135(4): 373?385.
[34]  Sui Q L, Wang Q, Zhu D C, Zhao Z D, Chen Y, Santosh M and Mo X X. 2013. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone. Lithos, 168: 144?159.
[35]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes.
[36]  Wilson B M. 1989. Igneous petrogenesis a global tectonic approach. Springer.
[37]  Woodhead J D, Eggins S M and Johnson R W. 1998. Magma genesis in the New Britain island arc: Further insights into meltingand mass transfer processes. Journal of Petrology, 39(9): 1641?1668.
[38]  Zartman R E and Doe B R. 1981. Plumbotectonics―the model. Tectonophysics, 75(1): 135?162.
[39]  Zhu D C, Mo X X, Niu Y, Zhao Z D, Wang L Q, Liu Y S and Wu F Y. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east?west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268(3): 298?312.
[40]  Zhu D C, Zhao Z D, Niu Y, Mo X X, Chung S L, Hou Z Q and Wu F Y. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1): 241?255.
[41]  Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493?571.
[42]  陈能松, 王新宇, 张宏飞, 孙敏, 李晓彦, 陈强. 2007. 柴?欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成: 基底性质和构造属性启示. 地球科学――中国地质大学学报, 32(1): 7?21.
[43]  高延林. 1985. 西藏南部雅鲁藏布江缝合带的板块构造标志与演化. 西北大学学报: 自然科学版, 15(4): 92?110.
[44]  高延林. 1988. 雅鲁藏布江缝合带中段的板块构造证据及演化特征. 中国区域地质, 7(4): 53?59.
[45]  郝杰, 柴育成, 李继亮. 1999. 雅鲁藏布江蛇绿岩的形成与日喀则弧前盆地沉积演化. 地质科学, 34(1): 4?12.
[46]  李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52( 9): 981?991.
[47]  徐向珍, 杨经绥, 郭国林, 李金阳. 2011. 雅鲁藏布江缝合带西段普兰蛇绿岩中地幔橄榄岩的岩石学研究. 岩石学报, 27(11): 3179?3196.
[48]  尹安. 2001. 喜马拉雅?青藏高原造山带地质演化――显生宙亚洲大陆生长. 地球学报, 22(3): 193?230.
[49]  于玉帅, 杨竹森, 刘英超, 田世洪, 纪现华, 高原, 赵灿, 赵武强, 刘阿睢. 2012. 西藏措勤尼雄矿田滚纠铁矿金云母矿物学特征及40Ar-39Ar年代学. 岩石矿物学杂志, 31(5): 681?690.
[50]  袁健芽, 曹圣华, 罗小川, 胡为正. 2008. 西藏措勤县尼雄矽卡岩型铁铜矿田的发现及地质特征与找矿意义. 中国地质, 35(1): 88?94.
[51]  张晓倩, 朱弟成, 赵志丹, 王立全, 黄建村, 莫宣学. 2010. 西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义. 岩石学报, 26(6): 1793?1804.
[52]  Briqueu L and Lancelot J R. 1979. Rb-Sr systematics and crustal contamination models for calc-alkaline igneous rocks. Earth and Planetary Science Letters, 43(3): 385?396.
[53]  Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological society of America bulletin, 101(5): 635?643.
[54]  McDermid I R C, Aitchison J C, Davis A M, Harrison T M and Grove M. 2002. The Zedong terrane: A Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology, 187(3): 267?277.
[55]  Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3): 215?224.
[56]  Pearce J A, Harris N B W and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4): 956?983.
[57]  Peccerillo A and Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63?81.
[58]  Plank T and Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3): 325?394.
[59]  Qu X M, Hou Z Q and Li Y G. 2004. Melt components derived from a sub-ducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74: 131?148.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133