全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

北京大石坡-黑山坨复式岩体地球化学特征、岩石成因及其地质意义

, PP. 139-152

Keywords: 大石坡正长岩,黑山坨花岗岩,华北克拉通,中生代,燕山,岩石成因

Full-Text   Cite this paper   Add to My Lib

Abstract:

北京早侏罗世大石坡?黑山坨复式岩体出露于华北克拉通东部燕山造山带西段,由大石坡角闪黑云正长岩和黑山坨花岗岩组成。正长岩为富Mg钾质中性岩,微量元素具有富集Rb、Ba、Sr、Pb、LREE等大离子亲石元素,相对亏损高场强元素Nb、Ta、U、Th、Zr、Hf以及P、Ti的特征,εNd(t)为?12.1~?12.2,ISr值为0.70506~0.70464;而花岗岩属于弱过铝质Mg质高K钙碱性岩石系列,具有LREE富集、HREE亏损,富集Rb、Ba、Th、U、Pb等大离子亲石元素和放射性元素,亏损高场强元素Nb、Ta、Zr、Hf以及Sr、P、Ti的特征,εNd(t)为?15.5~?18.0,ISr值为0.70516~0.70593。大石坡正长岩岩浆起源于富集地幔,是幔源K质基性岩浆在高压下分离结晶的产物。幔源岩浆底侵加热并交代下地壳,促使其部分熔融产生花岗质岩浆,侵位于尚未固结的正长岩,形成黑山坨花岗岩,二者组成同心环状复式岩体。大石坡角闪黑云正长岩的岩石学和地球化学特征暗示水的弱化作用在华北地块内部岩石圈地幔破坏过程中扮演了重要角色。幔源岩浆与地壳岩石之间能量和化学成分双扩散作用所导致的部分熔融是形成华北克拉通内部中生代高钾钙碱性长英质岩浆活动的一种重要成岩机制。

References

[1]  陈斌, 田伟, 刘安坤. 2008. 冀北小张家口基性?超基性杂岩的成因: 岩石学、地球化学和Nd-Sr同位素证据. 高校地质学报, 14(3): 295?303.
[2]  阎国翰, 牟保磊, 许保良, 何国琦, 谭林坤, 赵晖, 何中甫, 张任祜, 乔广生. 2000. 燕辽-阴山三叠纪碱性侵入岩年代学和Sr, Nd, Pb同位素特征及意义. 中国科学(D辑), 30(4): 383?387.
[3]  于炳松, 赵志丹, 苏尚国. 2012. 岩石学(第2版). 北京: 地质出版社: 1?275.
[4]  袁洪林, 柳小明, 刘勇胜, 高山, 凌文黎. 2005. 北京西山晚中生代火山岩U-Pb锆石年代学及地球化学研究. 中国科学(D辑), 35(9): 821?836.
[5]  张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代?早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824?842.
[6]  朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏. 中国科学(D辑), 42(8): 1135?1159.
[7]  Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97: 1-29.
[8]  Brenan J M, Shaw H F and Ryerson F J. 1995a. Experiment evidence for the origin of lead enrichment convergent- margin magmas. Nature, 378: 54?56.
[9]  Brenan J M, Shaw H F, Ryerson F J and Phinney D L. 1995b. Mineral aqueous fluid partitioning of trace elements at 900 ℃ and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geoch?imica et Cosmochimica Acta, 59: 3331?3350.
[10]  Green T H. 1982. Anatexis of mafic crust and high pressure crystallization of andesite // Thorpe R S. Andesites. New Jersey: John Wiley and Sons: 465?487.
[11]  Harrison T M and Watson E B. 1984. The behavior of apatite during crustal anatexis: Equilibrium and kinematic considerations. Geochimica et Cosmochimica Acta, 48(7): 1467?1477.
[12]  Johnson M C and Rutherford M J. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17: 837?841.
[13]  Kelemen P B, Johnson K T M, Kinzler R J and Irving A J. 1990. High-field-strength element depletions in arc basalts due to mantle-magma interaction. Nature, 345: 521?524.
[14]  Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237?240.
[15]  Kogiso T, Tatsumi Y and Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust, experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148: 193?205.
[16]  Le Maitre R W. 2002. Igneous Rocks: A Classification and Glossary of Terms (2nd Edition). Cambridge: Cambridge University Press: 1?236.
[17]  Litvinosky B A, Steel M and Wickham S M. 2000. Silicic magma formation overthickened crust: Melting of charnockite and leucogranite at 15-20 kbar. Journal of Petrology, 41: 717?737.
[18]  Liu Y S, Zong K Q, Kelemen P B and Gao S. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamo?rphism of lower crustal cumulates. Chemical Geology, 247: 133?153.
[19]  Lopez S, Castro A and Garcia-Casco A. 2005. Production of granodiorite melt by interaction between hydrous mafic magma and tonalitic crust: Experimental constraints and implications for the generation of Archaean TTG complexes. Lithos, 79: 229?250.
[20]  Montel J M and Vielzeuf D. 1997. Partial melting of graywacks: Part II, Composition of minerals and melts. Contributions to Mineralogy and Petrology, 128: 176?196.
[21]  Patino Douce A E and McCarthy T C. 1998. Melting of crustal rocks during continental collision and subduction // Hacker B R and Liou J G. When Continents Collide: Geodynamics and Geochemistry of Ultra-high Pressure Rocks. Dordercht: Kluwer Academic Publishers, 27?55.
[22]  Patino Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? // Castro A, Fernandez C and Vigneresse J L. Understanding Granites: Intergr?ating New and Classical Techniques. Geological Society, London, Special Publication, 168: 55?57.
[23]  Pearce J A and Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Science, 23: 251-285.
[24]  Peate D W and Pearce J A. 1998. Causes of spatial compositional variations in Mariana arc lavas: Trace element evidence. The Island Arc, 7: 479?495.
[25]  Peccerillo A and Taylor S R. 1976. Geochemistry of Eocene calcalkaline volcanic rocks of the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58: 63?81.
[26]  Philpotts A R and Ague J J. 2009. Principles of Igneous and Metamorphic Petrology (2nd Edition). Cambridge: Cambridge University Press: 1?667.
[27]  Sen C and Dunn T. 1994. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole- bearing peridotite. Contributions to Mineralogy and Petrology, 119: 422?432.
[28]  Sisson T W, Ratajeski K, Hankins W B and Glazner A F. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148: 635?661.
[29]  Sparks R S, Marshall L A. 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research, 29: 99?124.
[30]  Stolz A J, Jochum K P, Spettel B and Hofmann A W. 1996. Fluid- and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts. Geology, 24: 587?590.
[31]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and process // Saunders A D and Norry M J. Magmatism in Ocean Basins. Geological Society, London, Special Publication, 42: 313?345.
[32]  Tatsumi Y, Hamilton D L and Nesbitt R W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research, 29: 293?309.
[33]  Taylor R N and Nesbitt R W. 1998. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth and Planetary Science Letters, 164: 79?98.
[34]  Wang Y. 2013. Yanshan fold-and-thrust belt of the North China Craton: A Mesozoic analogue of Himalaya. Acta Geologica Sinica (English Edition), 87(supp): 325?327.
[35]  白志民, 许淑贞, 葛世炜. 1991. 八达岭花岗杂岩. 北京: 地质出版社: 1?172.
[36]  包志伟, 赵振华, 张佩华, 王一先. 2003. 张家口水泉沟正长岩杂岩体成因的REE和Sr、Nd、Pb同位素证据. 地质论评, 49(6): 596?604.
[37]  鲍亦刚, 刘振锋, 王世发, 黄?何, 白志民, 王继明, 王增护. 2001. 北京地质百年研究. 北京: 地质出版社: 1?274.
[38]  陈新跃, 王岳军, 张玉芝, 张爱梅, 曹有金. 2013. 桂东南南渡正长岩年代学、地球化学特征及其构造意义. 大地构造与成矿学, 37(2): 284?293.
[39]  程素华, 汪洋. 2010. 北京阳坊岩体元素地球化学特征、成因及构造背景. 地质论评, 56(2): 205?214.
[40]  程素华, 汪洋. 2011. TTG岩系Nb-Ta-La分馏特征的地球化学模拟: 对太古宙板块俯冲与大陆地壳生长机制的约束. 大地构造与成矿学, 35(1): 95?104.
[41]  邓晋福, 罗照华, 苏尚国, 莫宣学, 于炳松, 赖兴运, 谌宏伟. 2004. 岩石成因、构造环境与成矿作用. 北京: 地质出版社: 1?381.
[42]  汪洋, 程素华. 2010. “C型埃达克岩”: 一个基于误解的概念? 矿物岩石地球化学通报, 29(3): 284?292, 298.
[43]  汪洋, 程素华. 2011. 中国东部中生代高钾钙碱性岩浆岩的成因. 矿物岩石地球化学通报, 30(增刊): 31.
[44]  汪洋, 姬广义, 孙善平, 李家振. 2009. 北京西山沿河城东岭台组火山岩成因及其地质意义. 地质论评, 55(2): 191?214.
[45]  王蕊, 陈斌, 柳小明. 2007. 北京西山地区髫髻山组和东岭台组火山岩的地球化学特征与岩浆起源. 高校地质学报, 13(3): 603?612.
[46]  吴福元, 徐义刚, 高山, 郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145?1174.
[47]  肖庆辉, 王涛, 邓晋福, 莫宣学, 卢欣祥, 洪大卫, 谢才富, 罗照华, 邱瑞照, 王晓霞. 2009. 中国典型造山带花岗岩与大陆地壳生长研究. 北京: 地质出版社: 1?528.
[48]  徐志刚, 盛继福, 孙善平. 1999. 关于“橄榄玄粗岩系列(组合)”特征及某些问题的讨论. 地质论评, 45(增刊): 43?62.
[49]  鄢明才, 迟清华, 顾铁新, 王春书. 1997. 中国东部地壳元素丰度与岩石平均化学组成研究. 物探与化探, 21(6): 451?459.
[50]  阎国翰, 牟保磊, 曾贻善, 蔡剑辉, 任康绪, 李凤棠. 2007. 华北克拉通火成碳酸岩时空分布和锶钕同位素特征及其地质意义. 高校地质学报, 13(3): 463?473.
[51]  张拴宏, 赵越, 宋彪, 吴海. 2004. 冀北隆化早前寒武纪高级变质区内的晚古生代片麻状闪长岩――锆石SHRIMP U-Pb年龄及其构造意义. 岩石学报, 20(3): 621?626.
[52]  赵越. 1990. 燕山地区中生代造山运动及构造演化. 地质论评, 36(1): 1?12.
[53]  郑亚东, Davis G A, 王琮, Darby B J, 张长厚. 2000. 燕山带中生代主要构造事件与板块构造背景问题. 地质学报, 74(4): 289?302.
[54]  Clemens J D and Stevens G. 2012. What controls chemical variation in granitic magmas? Lithos, 134-135: 317?329.
[55]  Clemens J D. 2006. Melting of continental crust: Fluid regimes, melting reactions, and source-rock fertility // Brown M and Rushmer T. Evolution and Differentiation of Continental Crust Cambridge: Cambridge University Press: 296?330.
[56]  Cohen K M, Finney S and Gibbard P L. 2014. International Chronostratigraphic Chart, International Commission on Stratigraphy. http: //www.stratigraphy.org/ICSchart/ ChronostratChart2014-02.pdf.
[57]  Davis G A, Zheng Y D, Wang C, Darby B J, Zhang C H and Gehrels G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt: With emphasis on Hebei and Liaoning provinces, northern China // Hendrix M S and Davis G A. Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation. Geological Society of America Memoir, 194: 171?197.
[58]  DePaolo D J. 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature, 291: 193?196.
[59]  Elliott T, Plank T, Zindler A, White W and Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102: 14991?15019.
[60]  Frost B R and Frost C D. 2008. A classification for feldspathic igneous rocks. Journal of Petrology, 49: 1955?1969.
[61]  Frost B R and Frost C D. 2013. Essentials of Igneous and Metamorphic Petrology. Cambridge: Cambridge University Press: 1?303.
[62]  Frost B R, Arculus R J, Barnes C G, Collins W J, Ellis D J and Frost C D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033?2048.
[63]  Gao S, Liu X M, Yuan H L, Hattendorf B, Günther D, Chen L and Hu S H. 2002. Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectro?metry. Geostandards Newsletter-Journal of Geostandards and Geoanalysis, 26: 191?196.
[64]  Watson E B and Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295?304.
[65]  You C-F, Castillo P R, Gieskes J M, Chan L H and Spivack A J. 1996. Tracel elements behavior in hydrotheremal experiments: Implication for fluid processes shallow depth in subduction zones. Earth and Planetary Science Letters, 140: 41?52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133