全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

鲁西中生代高镁闪长岩的地球化学特征及其成因探讨*

, PP. 228-236

Keywords: 中生代,高镁闪长岩,岩石圈地幔,华北地台

Full-Text   Cite this paper   Add to My Lib

Abstract:

鲁西中生代侵入岩包括辉长岩,闪长岩,花岗闪长岩和花岗岩,以闪长岩最为常见。莱芜和沂南等地的闪长岩具有高Mg#(0.45~0.69),Cr(<278μg/g)的特点,并富集大离子亲石元素(LILE)和亏损高场强元素(HFSE),其总体成分特点类似于北美苏必利尔省的太古代高镁闪长岩和产于现代俯冲带的高镁安山岩。不过鲁西高镁闪长岩的HREE含量相对较高(Yb=1.1~1.9μg/g),La/Yb比值相对较低(6.7~20),其成分更接近于Piip型高镁安山岩。鲁西高镁闪长岩代表了华北地台早期拉张环境下的岩浆活动,可能是受深俯冲扬子大陆下地壳释放的埃达克质熔体交代的岩石圈地幔直接熔融的产物。

References

[1]  吴福元, 孙德有. 1999. 中国东部中生代岩浆作用与岩石圈减薄. 长春科技大学学报, 29(4): 313-318.
[2]  许文良, 迟效国, 袁朝等. 1993. 华北地台中部中生代闪长岩质岩石及深源包体. 北京:地质出版社, 164.
[3]  徐义刚. 1999. 拉张环境中的大陆玄武岩浆作用:性质及动力学过程. 见: 郑永飞主编. 化学地球动力学. 北京:科学出版社, 119-167.
[4]  Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting young subducted lithosphere. Nature, 347: 662-665.
[5]  Fan W M and Menzies M A. 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia, 16(3-4): 171-180.
[6]  Fitton J G, James D and Leeman W P. 1991. Basic magmatism associated with Late Cenozoic extension in the western United States: compositional variation in space and time. J Geophys Res, 96: 13693-13711.
[7]  Gao S, Zhang B R, Jin Z M et al. 1998. How mafic is the lower continental crust. Earth Planet Sci Lett, 161: 101-117.
[8]  Griffin W L, Zhang A D, O''Reilly S Y et al. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M, Chung S L, Lo C H et al. (Editors), Mantle dynamics and plate interactions in east Asia. Am Geophys Union Geodyn Ser, 27: 107-126.
[9]  Guo F, Fan W M, Wang Y J et al. 2001. Late Mesozoic mafic intrusive complexes in North China Block: constraints from the nature of subcontinental lithospheric mantle. Physics and Chemistry of the Earth (A), 26: 759-771.
[10]  Hawkesworth C J, Turner S, Gallagher K et al. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. J Geophy Res, 100: 10271-10286.
[11]  Hirose K and Kushiro I. 1993. Partial melting of dry peridotites at high pressures: determination of composition of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett, 114: 477-489.
[12]  Kelemen P B. 1995. Genesis of high Mg# andesites: implications for continental crust. Contrib Mineral Petrol, 120: 1-19.
[13]  Leeman W P and Harry D L. 1993. A binary source model for extension related magmatism in the Great Basin, Western North America. Science, 262: 1550-1554.
[14]  Menzies M A, Fan W M and Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of > 120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W et al. (Editors), Magmatic processes and plate tectonics. Geol Soc Spel Pub, 76: 71-78.
[15]  Rapp P R and Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J Petrol, 36: 891-931.
[16]  Shirey S B and Hanson G N. 1984 . Mantle-derived Archean Monzodiorites and trachyandesites. Nature, 310: 222-224.
[17]  Smithies R H and Champion D C. 2000. The Archaean high-Mg diorite suite: Links to Tonalite-Trondhjemite-Granodiorite magmastism and implications for early Archaean crustal growth. J Petrol, 41: 1653-1671.
[18]  Stern R A and Hanson G N. 1991. Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J Petrol, 32: 201-238.
[19]  Sun S-S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J(eds). Magmatism in the ocean basins. Geol Soc Spec Publ, 42: 313-345.
[20]  Tan D and Lin J. 1994. Mesozoic potassic magma province on North China Platform. Beijing: Seismological Press, 184.
[21]  Wei G J, Liang X R, Li X H and Liu Y. 2002. Precise measurement of Sr isotope of liquid and solid base using (LP)MC-ICPMS. Geochimica, 31(3): 295-299.
[22]  李献华, 刘颖, 涂湘林, 胡光黔, 曾文. 2002. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱溶分解样品方法的对比. 地球化学, 31(3): 289-294.
[23]  梁细荣, 韦刚健, 李献华等. 2002. 利用MC-ICPMS快速精确测定比值. 岩矿测试, 21(4): 247-251.
[24]  刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测量岩石样品中的40余种微量元素. 地球化学, 25(6):552-558.
[25]  谭东娟, 林景仟, 迟效国. 1994 . 华北地台中部中生代钾质岩浆区的岩浆活动时间-构造格架. 见:谭东娟和林景仟主编,华北地台中生代钾质岩浆区. 北京: 地震出版社, 24-33.
[26]  谭东娟, 林景仟. 1994. 华北地台中生代钾质岩浆区. 北京: 地震出版社, 184.
[27]  韦刚健, 粱细荣, 李献华, 刘颖. 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学, 31(3): 295-299.
[28]  Li X H, Liu Y, Tu X L, Hu G Q and Zeng W. 2002. Precise determination of chemical composition in silicate rocks using ICP-AES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution. Geochimica, 31(3): 289-194.
[29]  Liang X R, Wei G J, Li X H, et al., 2002. Rapid, precise determination of Nd isotope using MC-ICPMS. Petrologic and Mineral analyses, 21(4): 247-251.
[30]  Liu Y, Liu H C and Li X H. 1996. Precise and rapid analyses of 40 trace elements by ICP-MS. Geochimica, 25(6): 552-558.
[31]  Stern C R and Kilian R. 1996 . Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol, 123: 263-281.
[32]  Tan D, Lin J and Chi X. 1994. Magmatic activity age and tectonic framework of Mesozoic potassic magma province from Central North China Platform. In: Tan D and Lin J (eds). Mesozoic potassic magma province on North China Platform. Beijing: Seismological Press, 24-33.
[33]  Tatsumi Y and Ishizoka K. 1982. Origin of high-magnesian andesite in the Setouchi volcanic belt, southwest Japan, I. Petrological and chemical characteristics. Earth Planet Sci Lett, 60: 293-304.
[34]  Wu F Y and Sun D Y. 1999. Mesozoic magmatism and lithospheric thinning in eastern China. Bulletin of Changchun University of Science and Technology, 29(4): 313-318.
[35]  Xu J F, Shinjo R, Defant M J et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30: 1111-1114.
[36]  Xu P, Liu F T, Wang Q C et al. 2001. Slab-like high velocity anomaly in the uppermost mantle beneath the Dabie-Sulu orogen. Geophys Res Lett, 28: 1847-1850.
[37]  Xu W, Chi X, Yuan C et al. 1993. Mesozoic dioritic rocks and deep-seated inclusion in Central North China Platform. Beijing: Geological Publishing House, 164.
[38]  Xu Y G, 1999. Basaltic magmatism during continental extension: nature and dynamic processes. In: Zheng Y F (ed.) Chemical Geodynamics. Beijing: Science Press, 119-167.
[39]  Xu Y G. 2001. Thermo-tectonic destruction of the Archean lithospheric keel beneath eastern China: evidence, timing and mechanism. Physics and Chemistry of the Earth (A), 26: 747-757.
[40]  Yogodzinski G M, Kay R W, Volynets O N et al. 1995. Magnesian andesite in the western Aletian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin, 107: 505-519.
[41]  Zhang H F, Sun M, Zhou X H et al. 2002. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 144: 241-253.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133