[1] | 木士春, 潘牧, 袁润章. 2003a. 坡缕石矿物储氢材料及其制备方法. 中国发明专利, ZL 02139090.8.
|
[2] | 周理. 吕昌忠. 王怡林. 姚金花. 王瑜. 1999. 述评超临界温度气体在多孔固体上的物理吸附化学进展, 11(3): 222-226.
|
[3] | 周理, 周亚平. 1996. 关于氢在活性炭上高压吸附特性的实验研究. 中国科学(B辑), 26(5): 473-480.
|
[4] | 周亚平, 杨斌. 2000. 气体超临界吸附研究进展. 化学通报, (9): 8-13.
|
[5] | 周亚平, 周理. 1997. 超临界氢在活性炭上的吸附等温线研究. 物理化学学报, 13(2): 119-127.
|
[6] | 郑自立, 鞠党辰, 罗淑湘, 唐家中, 田煦. 1996. 坡缕石中微孔特征及其吸附机理讨论. 矿产综合利用, (6): 9-12.
|
[7] | Ahn C, Vajo J, Fultz B, Yazami R, Brown D and Brown R. 2002. Hydrogen storage in metal-modified single-walled nanotubes. Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405.
|
[8] | Arellano J S, Molina L M, Rubio A and Alonso J A. 2000. Density functional study of adsorption of molecular hydrogen on graphene layers. Journal of Chemical Physics, 112(18):8114-8119.
|
[9] | Atkinson K, Roth S, Hirscher M and Grunwald W. 2002. Carbon nanostructures: An efficient hydrogen storage medium for fuel cells? Fuel Cells Bulletin, (38): 9-12.
|
[10] | Brindley G W and Brown G . 1980. Crystal Structures of Clay Minerals and Their X-ray Identification. London: Miner Soc.
|
[11] | Chen Z G. 1994. Palygorskite-sepiolite. In: Clay minerals of China . Eds. by Yang Y X et al. Beijing: Geological Publishing House, 173-199 (in Chinese ).
|
[12] | Cheng H M, Yang Q H and Liu C. 2001. Hydrogen storage in carbon nanotubes. Carbon, 39: 1447 -1454.
|
[13] | Davis J A and Kent D B. 1990. Surface complexation modeling in aqueous geochemistry. In: Hochella M F and White A F, eds. Mineral Water Interface Geochemistry: Reviews in Mineralogy, Vol 23. Washington, D C: Miner Soc Am, 177- 259.
|
[14] | Davis M E. 1991. Zeolites and Molecular Sieves: Not Just Ordinary Catalysts. Ind Eng Chem Res, 30:1675-1683.
|
[15] | Dillon A C, Gilbert K E H, Parilla P A, Aleman J L, Hornyak G L, Jones K M, Heben M J. 2002. Hydrogen storage in carbon single-wall nanotubes. Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405.
|
[16] | Dillon AC, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S and Heben M J. 1997. Storage of hydrogen single-walled carbon nanotubes. Nature, 386(6623): 377-379.
|
[17] | Findenegg G H. 1983. High pressure adsorption of gases on homogeneous surfaces. In: Fundamentals of Adsorption: Proceedings of the Engineering Foundation Conference. Schloss Elmau, Bavaria, West Germany, 207-218.
|
[18] | Findenegg G H and Roring R. 1982. Physical adsorption of krypton on graphite over a wide density range. Soc Faraday Trans, 2(78): 1753-1764.
|
[19] | Griesinger A, Spindler K and Hahne E. 1999. Measurements and theoretical modelling of the effective thermal conductivity of zeolites. International Journal of Heat and Mass Transfer, 42: 4363-4374.
|
[20] | Gordon P A and Saeger R B. 1999. Molecular Modeling of Adsorptive Energy Storage : Hydrogen Storage in Single-Walled Carbon Nanotubes. Ind Eng Chem Res, 38: 4647- 4655.
|
[21] | Hirscher M , Becher M, Haluska M, Quintel A, Skakalova V, Choi Y M, Dettlaff-Weglikowska U, Roth S, Stepanek I, Bernier P, Leonhardt A and Fink J. 2002. Hydrogen storage in carbon nanostructures. Journal of Alloys and Compounds, 330-332: 654-658.
|
[22] | Hottinen T. 2001. Technical Review and Economic Aspects of Hydrogen Storage Technologies. Master’s thesis of department of engineering physics and mathematics, Helsinki University of Technology, 24-48.
|
[23] | Ichimura K and Sano M. 1992. Gettering of hydrogen and oxygen by alkali-metal graphite intercalation compounds. J Vac Sci Technol A, 10(3) : 543-546.
|
[24] | Kaneko K, Shimizu K and Suzuki T. 1992. Intrapore field-dependent micropore filling of supercritical N2 in slit- shaped micropores. Chem Phys, 97: 8705- 8711.
|
[25] | Jensen C M, Sun D L, Raman S S, Murphy K, Niemczura W P, Kumashiro K K, Eberhard M, Wang Z H and Gu X Q. 2002. Catalytically enhanced system for hydrogen storage. Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405.
|
[26] | L i P, Wan P, Peng T J and Song G B. 1996. A study on adsorption of organic vapors by palygorskite and sepiolite. Journal of Southwest China Institute of Technology, 4:44-49 (in Chinese with English abstract).
|
[27] | Liu C, Fan Y Y, Liu m, Chong H T, Cheng H M and Dressehaus M S. 1999. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286(5442):1127-1129.
|
[28] | Loutfy R O and Waxler E M. 2001. Feasibility of the 2001 DOE Hydrogen Program Review, Department of Energy, U S , NREL/cp-670-30535
|
[29] | Ma Y C, Xia Y Y, Zhao M W, Wang R J and Mei L M. 2001. Effective hydrogen storage in single-wall carbon nanotubes. Physics Review B, 63(11): Art. No. 115422.
|
[30] | Malin V L. 1970. Electron optical investigation of clay. Oxford: Pergamon Press, UK.
|
[31] | Maria F B, Luca M and Luciano P. 1996. Sepiolite and industrial waste-water purification: removal of Zn2+ and Pb2+ from aqueous solutions. Applied Clay Science, (11):43-54.
|
[32] | McClaine A W, Brenald R W and Rolfe J. 2000. Hydrogen storage using slurries of chemical hydrides. Hydrogen energy progress. Proceeding of the 13th World Hydrogen Energy Conference, Beijing, China, 132-147.
|
[33] | Menon P G . 1968. Adsorption at high pressures. Chem Rev, 68(3): 277-294.
|
[34] | Mu S C and Wang L. 2000. Classification of porous non-metallic minerals and its application. Non?Metallic Mines, (5): 43-46 (in Chinese).
|
[35] | Mu S C and Wang L. 2001. Discovery of Quaternary porous tuff and its significance in mineral materials. Acta Mineralogica Sinica, (2): 196-204 (in Chinese with English abstract).
|
[36] | Mu S C, Pan M and Yuan R Z. 2003a. Hydrogen storage materials of palygorskite and the method to prepare the same. Chinese patent, ZL 02139090.8 (in Chinese).
|
[37] | Mu S C, Pan M and Yuan R Z. 2003b. Hydrogen storage materials of sepiolite and the method to prepare the same. Chinese patent, ZL0213909.6 (in Chinese).
|
[38] | Mu Shichun, Pan Mu and Yuan Runzhang. 2003c. Hydrogen storage by adsorption in zeolites. Proceeding of Youth Hydrogen Forum 2003 for the 2nd International Hydrogen Energy Forum, Beijing, China: 177-180.
|
[39] | Yan J M and Zhang Q Y. 1986. Adsorption and condensation - the solid surface and pores. Beijing: Science Press (in Chinese).
|
[40] | Yin Y F, Mays T and McEnaney B. 2000. Molecular simulations of hydrogen storage in carbon nanotube arrays. Langmuir, 16(26): 10521-10527.
|
[41] | Zidan R. 2002. Doped carbon nanotubes for hydrogen storage. Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405.
|
[42] | Zoltai T and Stout J A. 1984. Mineralogy: Concepts and principles. Burgess Publishing Company.
|
[43] | 陈正国. 1994. 坡缕石-海泡石. 见:杨雅秀等著, 中国粘土矿物学. 北京: 地质出版社.
|
[44] | 李平, 万朴, 董发勤. 彭同江. 宋功宝. 1996. 海泡石坡缕石吸附有机气体研究. 西南工学院学报, 4: 44 -49.
|
[45] | 木士春, 汪灵. 2000. ,多孔非金属矿类型划分及其应用. 非金属矿, (5): 43-46.
|
[46] | 木士春, 汪灵. 2001. 第四纪多孔凝灰岩的发现及其矿物材料学意义. 矿物学报, (2): 196-204.
|
[47] | 木士春, 潘牧, 袁润章, 沈春辉. 2003b. 海泡石矿物储氢材料及其制备方法. 中国发明专利, ZL0213909.6.
|
[48] | 木士春, 潘牧, 袁润章. 2003c. Hydrogen storage by adsorption in zeolites. 见:第二届国际氢能论坛青年论坛会议论文集, 177-180.
|
[49] | 魏俊峰, 吴大清. 2000. 矿物―水界面的表面离子化和络合反应模式. 地球科学进展,15(1): 90-96.
|
[50] | 严继民, 张启元. 1986. 吸附与凝聚―固体的表面与孔. 北京: 科学出版社.
|
[51] | 王继徽, 关影莲, 曾乐. 1994. 海泡石吸附脱除低浓度SO2废气的研究. 湖南大学学报, 3: 112-116,128.
|
[52] | 周理. 2000. 碳基材料吸附储氢原理及规模化应用前景. 材料导报, (3): 3-5.
|
[53] | Chambers A, Park C, Baker R T K and Rodriguez N M. 1998. Hydrogen Storage in Graphite Nanofibers. J Phys Chem B, 102(22): 4253-4256.
|
[54] | Corma A, Mifsud A and Pariente J P. 1988. Influence of the procedure of nickel deposition on the textural and catalytic properties of nickel/sepiolite catalysts. Industrial & Engineering Chemistry Research, 27: 2044-2050 .
|
[55] | Damyanova S , Daza Land Fierro J L G. . 1996. Surface and catalytic properties of lanthanum-promoted Ni/Sepiolite catalysts for styrene hydrogenation. Journal of Catalysis, 159:150-161.
|
[56] | Darkrim, F. Aoufi A, Malbrunot P and Levesque D. 2000. Hydrogen adsorption in the NaA zeolite: A comparison between numerical simulations and experiments. Journal of Chemical Physics, 112:5991- 5999.
|
[57] | Nijkamp M G, Raaymakers J E, Van Dillen A J and De Jong K P. 2001. Hydrogen storage using hysisorption - Materials demands. Appl Phys A, 72:619-623.
|
[58] | Ozawa S, Kusumi S and Ogino Y J. 1976. Physical adsorption of gases at high pressure IV: An improvemental adsorption equation. J Colloid & Interface Science, 56(1): 83-91.
|
[59] | Petrovic J J. 2002. Advanced concepts for hydrogen storage. DOE hydrogen storage workshop. www. cartech.doe.gov/pdf/fc/209.pdf.
|
[60] | Pan L, Sander M B, Huang XY, Li J, Smith M, Bittner E, Bockrath B and Johnson J K. 2004. Microporous metal organic materials: Promising candidates as sorbents for hydrogen storage. J Am Chem SOC, 126: 1308-1309.
|
[61] | Petterson J and Hijortsberg O. 1997. Hydrogen storage alternative- a technological and economic assessment. KFB-Meddlande, 6-25.
|
[62] | Phillips T. 2004. Rocks in your gas tank: Experiments on board the international space station could accelerate the drive toward a hydrogen-based economy. Life in earth, NASA Home, http://www.nasa.gov/vision/earth/ everydaylife/apr _zeolite.html .
|
[63] | Pradhan B K, Sunanasekra G U, Adu K W , Romero H E , Williams K A and Eklund P C. 2002. Experimental probes of the molecular hydrogen-carbon nanotube interaction. Physica B, 323: 115-121.
|
[64] | Rosi N, Eckert J, Eddaoudi M, Vodak DT, Kim J, O''Keeffe M and Yaghiet O M. 2003. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 300:1127-1129.
|
[65] | Schlapbach L and Züttel A. 2001. Hydrogen-storage materials for mobile application. Nature, 414: 353-358 .
|
[66] | Shethna H K and Bhatia S K. 1994. Interpretation of adsorption isotherms at above-critical temperatures using a modified micropore filling model . Langmuir, 10: 870-879.
|
[67] | Tan Z M and Gubbins K E. 2000. Adsorption in carbon micropores at supercritical temperature. J Phys Chem , 94(15):6061-6069.
|
[68] | Tokiyoshi M and Motoji I. 2002. Thermal stability of SO2 and NO2 adsorbed on the surface of sepiolite, a porous clay mineral. Japanese Journal of Applied Physics, 41(5):2916-2919.
|
[69] | Van O H and Fripiat J J. 1979. Data handbook for clay materials and other non-metallic minerals . New York, Pergramon Press.
|
[70] | Wang J H, Guan Y L and Zeng L. 1994. Study on desulfurization of waste gas with low concentration SO2 by sepiolite as adsorbent. Journal of Hunan University, 3: 112-116, 128 (in Chinese with English abstract).
|
[71] | Wang X, Zhuang J ,Chen J, Zhou K B and Li Y D. 2004. Thermal-stable Silicate nanotubes. Angew Chem Int Ed, 43:2017-2021.
|
[72] | Wei J F and Wu D Q. 2000. Surface ionization and surface complexation models at mineral/water interface. Advance in Earth Sciences, 15(1): 90-96 (in Chinese with English abstract).
|
[73] | Weitkamp J, Fritz M and Ernst S. 1995. Zeolite as Media for Hydrogen Storage. Int J Hydrogen Energy, 20: 967-970.
|
[74] | Weitkamp J, Fritz M and Ernst S. 1992. Zeolite as Speicher material für Wasserstoff. Chem-Ing Tech, 64:1106-1109.
|
[75] | Zhou L. 2000. Principle of the adsorptive storage of hydrogen on carbon adsorbent and its engineering prospect. Hydrogen energy progress. Proceeding of the 13th World Hydrogen Energy Conference, Beijing, China, 132-147: 498-503.
|
[76] | Zhou L. 2000. Adsorptive storage of hydrogen on carbon materials -principles and prospects of large-scale applicatipn. Materials Review, (3): 3-5 (in Chinese with English abstract) .
|
[77] | Zhou L, Lu C Z, Wang Y L, Yao J H and Wang Y. 1999. Physisorption of gases on porous solids at above-critical temperatures. Progress In Chem Istry, 11(3): 222-226 (in Chinese with English abstract).
|
[78] | Zhou L, Zhang J H and Zhou Y. 2001a. A simple isotherm equation for modeling the adsorption equilibria on porous solids over wide temperature ranges. Langmuir, 17: 5503-5507.
|
[79] | Zhou L and Zhou Y P. 1996. Experimental studies on high pressure adsorption characteristics of hydrogen in activated carbon. Science in China Series B-Chemistry, 26(5): 473-480 (in Chinese ).
|
[80] | Zhou L and Zhou Y P. 1997. Study on the adsorption isotherms of supercritical hydrogenon active carbon. Acta Physico-Chemico Sinica, 13(2): 119-127 (in Chinese with English abstract).
|
[81] | Zhou L and Zhou Y P. 1998. Linearization of adsorption isotherms for high pressure applications. Chem Eng Sci, 53 (14): 2531-2536.
|
[82] | Zhou L and Zhou Y P. 2001b. A mathematical method for determination of absolute adsorption from experimental isotherms of supercritical gases. Chn J Chem Eng, 9(1): 110-115.
|
[83] | Zhou L, Zhou Y P, Bai S P, Lü C and Yang B. 2002. Studies on the Transition Behavior of Physical Adsorption from the Sub- to the Supercritical Region: Experiments on Silica Gel, J. Colloid & Interface Sci, 253: 9-15.
|
[84] | Zhou L, Zhou Y P, Li M, Chen P and Wang Y. 2000. Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon. Langmuir, 16: 5955-5959.
|
[85] | Zhou Y P and Yang B. 2000. Progress in the studies on the adsorption of supercritical gases. Chemistry Magazine, (9): 8-13.
|
[86] | Zhou Y P, Bai S P, Zhou L and Yang B. 2001. Studies on the Physical Adsorption Equilibria of Gases on Porous Solids for a Wide Temperature Range Spanning the Critical Region - Adsorption on Microporous Activated Carbon. Chinese Journal of Chemistry, 19(10): 943-948.
|
[87] | Zheng Z L, Ju D C, Luo s X, Tang J Z and Tian X. 1996. Micropore features and adsorption mechanism of palygorskite. Multipurpose Utilization of Mineral Resources, (6): 9-12.
|