Betts P G, Giles D and Lister G S. 2003, Tectonic environment of shale?hosted massive sulfide Pb?Zn?Ag deposits of Proterozoic northeastern Australia. Economic Geology, 98:557-576.
[2]
Normark W R, Moryon J L, Koski R A, Clague D A and Delaney J R. 1983. Active hydrothermal vents and sulfide deposits on the southern Juan de Fuca Ridge. Geology, 11: 158-163.
[3]
Oliver N H S, McLellan J G, Hobbs B E, Cleverley J S, Ord A and Feltrin L. 2006. Numerical models of extensional deformation, heat transfer and fluid flow across basement?cover interfaces during basin?related mineralization. Economic Geology, 101: 1-31.
[4]
Stix J, Kennedy B, Hannington M, Gibson H, Fiske R, Mueller W and Franklin J. 2003. Caldera?forming processes and the origin of submarine volcanogenic massive sulfide deposits. Geology, 31(4): 375-378.
[5]
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Journal of the Geological Society Special publications, 42: 313-345.
[6]
Trueman C N and Benton M J. 1997. A geochemical method to trace the taphonomic history of reworked bones in sedimentary settings. Geology, 25(3): 263-266.
[7]
Whitbread M A and Moore C L. 2004. Two lithogeochemical approaches to the identification of alteration patterns at the Elura Zn?Pb?Ag deposit, Cobar, New South Wales, Australia: use of Pearce Element Ratio analysis and Isocon analysis. Geochemistry: Exploration, Environment, Analysis, 4: 129-141.
Bau M. 1991. Rare?earth element mobility during hydrothermal and metamorphic fluid?rock interaction and significance of the oxidation state of europium. Chemical Geology, 93: 219-230.
[31]
Doucet P, Mueller W and Chartrand F. 1988. Alteration and ore mineral characteristics of the Archean Coniagas massive sulfide deposit, Abitibi belt, Quebec. Canada Journal of Earth Science, 35: 620-636.
[32]
Hass J R, Shock E L and Sassani D C. 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial modal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperature. Geochimica et Cosmochimica Acta, 59(21): 4329-4350.
[33]
Humphrisi S E and Bach W. 2005. On the Sr isotope and REE compositions of anhydrites from the TAG seafloor hydrothermal system. Geochimica et Cosmochimica Acta, 69(6): 1511-1525.
[34]
Ireland T, Large R R, McGoldrick P J and Blake M. 2004. Spatial distribution patterns of sulfur isotopes, nodular carbonate, and ore textures in the McArthur River (HYC) Zn?Pb?Ag deposit, Northern Territory, Australia. Economic Geology, 99: 1687-1709.
[35]
Koski R A, Clague D A and Ouin E. 1984. Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge. Geological Society of America Bulletin, 95: 930-945.
[36]
Labrenz M, Druschel G K, Thomsen?Ebert T, Gilbert B, Welch S A, Stasio G D, Bond P L, Lai B, Kelley S D and Banfield J F. 2000. Formation of sphalerite ( ZnS ) deposits in natural biofilms of sulfate?reducing bacteria. Science, 290: 1744-1747.
[37]
Lakshtannov L Z and Stipp S L S. 2004. Experimental study of europium (III) coprecipitation with calcite. Geochimica et Cosmochimica Acta, 68(4): 819-827.
[38]
Large R R, Bull S W, Cooke D R and McGoldrick P J. 1998. A genetic model for the HYC deposit, Australia: based on regional sedimentology, geochemistry and sulphide?sediment relationships. Economic Geology, 93: 1345-1569.
[39]
Leitch C H B. 1981. Mineralogy and textures of the Lahanos and Kizilkaya massive sulphide deposits, northeastern Turkey and their similarity to Kuroko ores. Mineral Deposita, 16: 241-257.
[40]
Leitch C H B. 1990. Ore textures in Turkish volcanogenic massive sulfide deposits in light of exhalative sulfide deposits from axial seamount and explorer ridge, Northeastern Pacific Ocean. Canadian Mineralogist, 28:51-54.
[41]
Lottermoser B G. 1989. Rare earth element study of exhalites within the Willyama Supergroup, Broken Hill Block, Australia. Mineral Deposita, 24: 92-99.
[42]
Lydon J H. 1988. Ore deposit model?14, Volcanogenic massive sulfide deposits, part 2: genetic models. Geoscience Canada, 15: 43-66.
[43]
Lydon J W. 1984. Ore deposit model 14, Volcanogenic massive sulfide deposits, part 1: A descriptive model. Geoscience Canada, 11: 195-202.
[44]
Marchig V, Gundlach H, Moller P and Schley F. 1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology, 50(3): 241-256.
[45]
Michard A, Albarde F, Michard G et al. 1983. Rare?earth elements and uranium in high?temperature solutions from East Pacific Rise hydrothermal vent field (13°N). Nature, 303: 795-797.
[46]
Mills R and Elderfield H. 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mount 26oN mid?Atlantic Ridge. Geochimica et Cosmochimica Acta, 59(17): 3511-3524.
[47]
Murton B J, Klinkhammer G, Becker K, Briais A, Edge D, Hayward N, Millard N, Mitchell J, Rouse I, Rudnicki M, Sayanagi K, Sloan H and Parson L M. 1994. Direct evidence for the distribution and occurrence of hydrothermal activity between 27°?30°N on the Mid?Atlantic Ridge. Earth Planetary Science Letter, 125: 119-128.
[48]
Parkes R J, Cragg B A and Wellsbury P. 2000. Recent studies on bacterial populations and processes in subsea floor sediments: A review. Hydrogeological Journal, 8: 11-28.
[49]
Pearce T H and Stanley C R. 1991. The validity of Pearce element ratio analysis in petrology: an example from the Uwekahuna laccolith, Hawaii. Contributions to Mineralogy and Petrology, 108: 212-218.
[50]
Pearce T H. 1987. The identification and assessment of spurious trends in Pearce?type ratio variation diagrams: a discussion of some statistical arguments. Contributions to Mineralogy and Petrology, 97: 529-534.
[51]
Slack J F, Kelley K D, Anderson V M, Clark J L and Ayuso R A. 2004. Multistage hydrothermal silicification and Fe?Tl?As?Sb?Ge?REE enrichment in the Red Dog Zn?Pb?Ag district, northern Alaska: Geochemistry, origin and exploration applications. Economic Geology, 99: 1481-1508.
[52]
Stanley C R and Russell J K. 1989. Petrologic hypothesis testing with Pearce element ratio diagrams, derivation of diagram axes. Contributions to Mineralogy and Petrology, 103(1): 78-89.
[53]
Taylor S R and McLennan S M. 1981. The composition and evolution of the continental?crust?rare?earth element evidence from sedimentary?rocks. Philosophical Transactions of the Royal Society of London, 301(1461): 381-399.
[54]
Taylor S R and McLennan S M. 1985. The continental crust: Its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Oxford London: Blackwell Scientific Publication, 1-30.