全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新疆霍什布拉克铅锌矿床地质、地球化学特征研究

, PP. 205-217

Keywords: 西南天山,霍什布拉克铅锌矿床,热水沉积矿床,矿床地质,矿床地球化学

Full-Text   Cite this paper   Add to My Lib

Abstract:

新疆霍什布拉克铅锌矿床的矿体和含矿地层的产状一致,主矿体的矿石具有条带状、纹层状构造,矿石中大量发育霉球状、管状和环带状生物结构,显示出层控、热水沉积成因的特点。含矿地层和矿石样品的主量元素PER图解显示含矿碳酸盐岩以含石膏的灰岩为主,围岩的白云岩化微弱,矿化与硅化关系密切。矿石、含矿碳酸盐岩和页岩、粉砂质灰岩和泥质粉砂岩等碎屑岩具有各自鲜明的微量元素分布特征,上层矿体矿石中较强的富集过渡族元素Ti、V、Cr、Mn、Co、Ni、非活动性元素Zr、Hf及大离子亲石元素Sr和Pb,亏损活动性元素Na、K、Rb、Ba和非活动性元素Nb、Th。其围岩重结晶泥晶灰岩富集Ti、Mn、Ni、Sr和Pb,亏损Na、K、V、Fe、Rb、Ba、Zr、Hf、Nb和Th。下层矿体的围岩页岩和泥质、粉砂质灰岩样品的微量元素分布在平均上地壳线附近,部分样品较明显的富集Ti、V、Cr、Mn、Co、Ni、Rb、Y、Zr和Hf,亏损Na、Fe、Sr、Nb。上层矿体矿石和下层矿体围岩中的部分碎屑岩富集强亲岩浆元素Cr、Co、Ni,且上层矿体矿石的稀土元素分布模式具有强的正Eu异常,部分下层矿体围岩具有较明显的正Eu异常。地质和地球化学特征显示该矿床属于热水沉积矿床中的SEDEX型矿床。

References

[1]  Betts P G, Giles D and Lister G S. 2003, Tectonic environment of shale?hosted massive sulfide Pb?Zn?Ag deposits of Proterozoic northeastern Australia. Economic Geology, 98:557-576.
[2]  Normark W R, Moryon J L, Koski R A, Clague D A and Delaney J R. 1983. Active hydrothermal vents and sulfide deposits on the southern Juan de Fuca Ridge. Geology, 11: 158-163.
[3]  Oliver N H S, McLellan J G, Hobbs B E, Cleverley J S, Ord A and Feltrin L. 2006. Numerical models of extensional deformation, heat transfer and fluid flow across basement?cover interfaces during basin?related mineralization. Economic Geology, 101: 1-31.
[4]  Stix J, Kennedy B, Hannington M, Gibson H, Fiske R, Mueller W and Franklin J. 2003. Caldera?forming processes and the origin of submarine volcanogenic massive sulfide deposits. Geology, 31(4): 375-378.
[5]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Journal of the Geological Society Special publications, 42: 313-345.
[6]  Trueman C N and Benton M J. 1997. A geochemical method to trace the taphonomic history of reworked bones in sedimentary settings. Geology, 25(3): 263-266.
[7]  Whitbread M A and Moore C L. 2004. Two lithogeochemical approaches to the identification of alteration patterns at the Elura Zn?Pb?Ag deposit, Cobar, New South Wales, Australia: use of Pearce Element Ratio analysis and Isocon analysis. Geochemistry: Exploration, Environment, Analysis, 4: 129-141.
[8]  别风雷,侯增谦,李胜荣,苏文超,徐九华. 2000. 川西呷村超大黑矿型矿床成矿流体稀土元素组成.岩石学报, 16(4): 575-580.
[9]  曹荣龙, 朱寿华, 朱祥坤, 管云彬. 1993. 新疆北部板块与地体构造格局. 见: 涂光炽主编. 新疆北部固体地球科学新进展. 北京: 科学出版社, 11-26.
[10]  陈哲夫. 2004. 新疆开合构造与成矿特征的有关问题. 地质通报, 23(3): 214-221.
[11]  成守德. 1996. 中国新疆北部及邻区贵重有色金属矿产成矿图说明书. 武汉: 中国地质大学出版社, 1-112.
[12]  邓贵安,蔡宏渊. 2003. 霍什布拉克铅锌矿床成因研究. 矿产与地质, 17(6): 688-691.
[13]  丁振举,姚书振,刘丛强,周宗桂,杨明国. 2003. 东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪. 岩石学报, 19(4): 792-798.
[14]  何国琦, 李茂松, 韩宝福. 2001. 中国西南天山及邻区大地构造研究. 新疆地质, 19(1): 7-11.
[15]  何国琦, 刘德权, 李茂松, 唐延龄, 周汝洪. 1995. 新疆主要造山带地壳发展的五阶段模式及成矿系列.新疆地质, 13(2): 99-193.
[16]  胡霭琴, 王中刚, 涂光炽等. 1997. 新疆北部地质演化及成岩成矿规律. 北京:科学出版社, 210-223.
[17]  贾承造, 张师本, 吴绍祖等. 2004. 塔里木盆地及周边地层(下册). 北京: 科学出版社, 2-77.
[18]  刘德权,唐延龄,周汝洪.1996.中国新疆矿床成矿系列. 北京:地质出版社, 1-101.
[19]  裴荣富,李进文,梅燕雄. 2005. 大陆边缘成矿. 大地构造与成矿学, 29(1): 24-34.
[20]  彭军, 伊海生, 夏文杰. 1999. 湘黔桂地区晚前寒武纪层状硅质岩的地球化学特征及成因. 地质地球化学, 27(4): 33-39.
[21]  涂光炽主编. 1993. 新疆北部固体地球科学新进展. 北京: 科学出版社, 1-548.
[22]  杨建国, 闫晔轶, 徐学义, 马中平, 赵仁夫, 姚文光. 2004. 西南天山成矿规律及其与境外对比研究. 矿床地质, 23(1): 20-30.
[23]  杨牧, 彭省临, 杨斌, 刘亮明. 2005. 新疆北部壳体大地构造演化与运动初步研究. 大地构造与成矿学, 29(1):113-121.
[24]  曾乔松,陈广浩,王核,李鹏春. 2005. 基于多因复成矿床理论探讨阿舍勒铜矿的成因. 大地构造与成矿学,29(4):545-550.
[25]  张良臣, 吴乃元. 1985. 天山地质构造及演化. 新疆地质, 8(2): 1-14.
[26]  张志斌, 李朝阳, 涂光炽, 夏斌, 韦振权. 2006. 川、滇、黔接壤地区铅锌矿床产出的大地构造演化背景及成矿作用. 大地构造与成矿学, 30(3): 343-354.
[27]  赵仁夫, 杨建国, 王满仓, 姚文光. 2002. 西南天山成矿地质背景研究及找矿潜力评价. 西北地质, 35(4): 101-121.
[28]  赵振华, 沈远超, 涂光炽. 2001.新疆金属矿产资源的基础研究. 北京: 科学出版社, 1-276.
[29]  周永章. 1990. 丹池盆地热水成因硅质岩地球化学特征. 沉积学报, 8(3): 75-83.
[30]  Bau M. 1991. Rare?earth element mobility during hydrothermal and metamorphic fluid?rock interaction and significance of the oxidation state of europium. Chemical Geology, 93: 219-230.
[31]  Doucet P, Mueller W and Chartrand F. 1988. Alteration and ore mineral characteristics of the Archean Coniagas massive sulfide deposit, Abitibi belt, Quebec. Canada Journal of Earth Science, 35: 620-636.
[32]  Hass J R, Shock E L and Sassani D C. 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial modal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperature. Geochimica et Cosmochimica Acta, 59(21): 4329-4350.
[33]  Humphrisi S E and Bach W. 2005. On the Sr isotope and REE compositions of anhydrites from the TAG seafloor hydrothermal system. Geochimica et Cosmochimica Acta, 69(6): 1511-1525.
[34]  Ireland T, Large R R, McGoldrick P J and Blake M. 2004. Spatial distribution patterns of sulfur isotopes, nodular carbonate, and ore textures in the McArthur River (HYC) Zn?Pb?Ag deposit, Northern Territory, Australia. Economic Geology, 99: 1687-1709.
[35]  Koski R A, Clague D A and Ouin E. 1984. Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge. Geological Society of America Bulletin, 95: 930-945.
[36]  Labrenz M, Druschel G K, Thomsen?Ebert T, Gilbert B, Welch S A, Stasio G D, Bond P L, Lai B, Kelley S D and Banfield J F. 2000. Formation of sphalerite ( ZnS ) deposits in natural biofilms of sulfate?reducing bacteria. Science, 290: 1744-1747.
[37]  Lakshtannov L Z and Stipp S L S. 2004. Experimental study of europium (III) coprecipitation with calcite. Geochimica et Cosmochimica Acta, 68(4): 819-827.
[38]  Large R R, Bull S W, Cooke D R and McGoldrick P J. 1998. A genetic model for the HYC deposit, Australia: based on regional sedimentology, geochemistry and sulphide?sediment relationships. Economic Geology, 93: 1345-1569.
[39]  Leitch C H B. 1981. Mineralogy and textures of the Lahanos and Kizilkaya massive sulphide deposits, northeastern Turkey and their similarity to Kuroko ores. Mineral Deposita, 16: 241-257.
[40]  Leitch C H B. 1990. Ore textures in Turkish volcanogenic massive sulfide deposits in light of exhalative sulfide deposits from axial seamount and explorer ridge, Northeastern Pacific Ocean. Canadian Mineralogist, 28:51-54.
[41]  Lottermoser B G. 1989. Rare earth element study of exhalites within the Willyama Supergroup, Broken Hill Block, Australia. Mineral Deposita, 24: 92-99.
[42]  Lydon J H. 1988. Ore deposit model?14, Volcanogenic massive sulfide deposits, part 2: genetic models. Geoscience Canada, 15: 43-66.
[43]  Lydon J W. 1984. Ore deposit model 14, Volcanogenic massive sulfide deposits, part 1: A descriptive model. Geoscience Canada, 11: 195-202.
[44]  Marchig V, Gundlach H, Moller P and Schley F. 1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology, 50(3): 241-256.
[45]  Michard A, Albarde F, Michard G et al. 1983. Rare?earth elements and uranium in high?temperature solutions from East Pacific Rise hydrothermal vent field (13°N). Nature, 303: 795-797.
[46]  Mills R and Elderfield H. 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mount 26oN mid?Atlantic Ridge. Geochimica et Cosmochimica Acta, 59(17): 3511-3524.
[47]  Murton B J, Klinkhammer G, Becker K, Briais A, Edge D, Hayward N, Millard N, Mitchell J, Rouse I, Rudnicki M, Sayanagi K, Sloan H and Parson L M. 1994. Direct evidence for the distribution and occurrence of hydrothermal activity between 27°?30°N on the Mid?Atlantic Ridge. Earth Planetary Science Letter, 125: 119-128.
[48]  Parkes R J, Cragg B A and Wellsbury P. 2000. Recent studies on bacterial populations and processes in subsea floor sediments: A review. Hydrogeological Journal, 8: 11-28.
[49]  Pearce T H and Stanley C R. 1991. The validity of Pearce element ratio analysis in petrology: an example from the Uwekahuna laccolith, Hawaii. Contributions to Mineralogy and Petrology, 108: 212-218.
[50]  Pearce T H. 1987. The identification and assessment of spurious trends in Pearce?type ratio variation diagrams: a discussion of some statistical arguments. Contributions to Mineralogy and Petrology, 97: 529-534.
[51]  Slack J F, Kelley K D, Anderson V M, Clark J L and Ayuso R A. 2004. Multistage hydrothermal silicification and Fe?Tl?As?Sb?Ge?REE enrichment in the Red Dog Zn?Pb?Ag district, northern Alaska: Geochemistry, origin and exploration applications. Economic Geology, 99: 1481-1508.
[52]  Stanley C R and Russell J K. 1989. Petrologic hypothesis testing with Pearce element ratio diagrams, derivation of diagram axes. Contributions to Mineralogy and Petrology, 103(1): 78-89.
[53]  Taylor S R and McLennan S M. 1981. The composition and evolution of the continental?crust?rare?earth element evidence from sedimentary?rocks. Philosophical Transactions of the Royal Society of London, 301(1461): 381-399.
[54]  Taylor S R and McLennan S M. 1985. The continental crust: Its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Oxford London: Blackwell Scientific Publication, 1-30.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133