全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单层褶皱变形过程中最大主应力与水平应变的变化及其影响因素

, PP. 37-43

Keywords: 褶皱构造,数值模拟,最大主应力,水平应变

Full-Text   Cite this paper   Add to My Lib

Abstract:

对地质构造进行定量半定量研究是地质工作者近几十年来一直努力的方向,构造数值模拟是有效的定量研究方法之一。褶皱是一种典型的构造类型,对褶皱构造进行定量半定量研究也一直是构造地质学家们所致力解决的研究课题。本文结合近年来单层褶皱构造数值模拟研究进展,以及笔者近几年来对单层褶皱所进行的数值模拟实验研究,主要论述了单层褶皱变形的影响因素,单层褶皱变形过程中的最大主应力与水平应变的变化及其影响因素等。数值模拟技术为褶皱变形提供了一种新的研究方法,该方法在构造地质领域将有很好的发展前景。

References

[1]  但卫, 杨坤光, 马昌前. 2006. 东大别罗田地区纵弯式褶皱及其地质意义. 大地构造与成矿学, 30(4): 422-429.
[2]  贾东, 陈竹新, 张惬, 张逸昆,王良书, 陆建军, 陈小明. 2005. 东营凹陷伸展断弯褶皱的构造几何学分析. 大地构造与成矿学, 29(3): 295-302.
[3]  李玉林, 杨锡禄,陈至达, 杨成永. 1999. 均质多岩层褶皱的大变形数值模拟. 煤田地质与勘探, 1(7): 4-6.
[4]  林舸, 赵重斌, 张晏华,王岳军, 单业华. 2005. 地质构造变形数值模拟研究的原理、方法及相关进展. 地球科学进展, 5(20): 549-553.
[5]  王长城, 施泽进, 田亚铭, 徐亮, 李和, 徐伟. 2006. 东湾背斜构造特征与勘探目标选择. 大地构造与成矿学, 30(1): 23-27.
[6]  叶柏龙, 喻爱南, 蓝燕. 1995. 位于异性异厚介质中的单层褶皱理论. 中南工业大学学报, 26(6): 707-710.
[7]  钟延秋, 李勇, 郭洪金, 钟建华. 2006. 济阳坳陷古近系同沉积背斜构造及其与油气的关系. 大地构造与成矿学, 30(1): 28-40.
[8]  朱志澄, 宋鸿林. 1990. 构造地质学. 武汉: 中国地质大学出版社.
[9]  Abbassi M R and Mancktelow N S. 1990. The effect of initial perturbation shape and symmetry on fold development. Journal of Structural Geology, 2: 273-282.
[10]  Abbassi M R and Mancktelow N S. 1992. Single layer buckle folding in non-linear materials: I. Experimental study of fold development from an isolated initial perturbation. Journal of Structural Geology, 14: 85-104.
[11]  Biot M A. 1961. Theory of folding of strati?ed viscoelastic media and its implication in tectonics and orogenesis. Geological Society of America Bulletin, 72: 1595-1620.
[12]  Currie J B, Patnode H W and Trump R P. 1962. Development of folds in sedimentary strata. Geological Society of America Bulletin, 73: 655?674.
[13]  Hudleston P J and Lan L. 1994. Rheological controls on the shapes of single layer folds. Journal of Structural Geology, 16: 1007-1021.
[14]  Hudleston P J and Lan L B. 1993. Information from fold shapes In: Special issue "Geometry of naturally deformed rocks". Journal of Structural Geology, 15: 253-264.
[15]  Hudleston P J. 1973a. An analysis of "single?layer" folds developed experimentally in viscous media. Tectonophysics, 16: 189-214.
[16]  Hudleston P J. 1973b. Fold morphology and some geometrical implications of theories of fold development. Tectonophysics, 16: l-46.
[17]  Hunt G W, Mühlhaus H B and Whiting A I M. 1996. Evolution of localized folding for a thin elastic layer in a softening visco?elastic medium. Pure and Applied Geophysics, 146: 229-252.
[18]  Jeng F S, Lin M L and Lai Y C. 2002. Influence of strain rate on buckle folding of an elasto?viscous layers. Journal of Structural Geology, 24(3): 501-516.
[19]  Kocher T, Schmalholz S M and Mancktelow N S. 2006. Impact of mechanical anisotropy and power?law rheology on single layer folding. Tectonophysics, 421:71-87.
[20]  Mancktelow N S. 1999. Finite?element modelling of single?layer folding in elasto?viscous materials: the effect of initial perturbation geometry. Journal of Structural Geology, 21: 161-177.
[21]  Mancktelow N S. 2001. Single?layer folds developed from initial random perturbations: the effects of probability distribution, fractal dimensions, phase, and amplitude. Geological Society of America Bulletin, 193: 69-87.
[22]  Ramberg H. 1963. Fluid dynamics of viscous buckling applicable to folding of layered rocks. Bulletin of the American Association of Petroleum Geologists, 47: 484-505.
[23]  Schmalholz S M and Podladchikov Y Y. 1999. Buckling versus folding: importance of viscoelasticity. Geophysical Research Letters, 26: 2641-2644.
[24]  Schmalholz S M and Podladchikov Y Y. 2000. Finite amplitude folding: transition from exponential to layer length controlled growth. Earth and Planetary Science Letters, 179: 363-377.
[25]  Turcotte D L and Schubert G. 2002. Geodynamics, 2nd edition. London: Cambridge University Press. Whiting A I M and Hunt G W. 1997. Evolution of nonperiodic forms in geological folds. Mathematical Geology, 29: 705-723.
[26]  Williams J R. 1980. Similar and chevron folds in multi?layers using finite?element and geometric models. Tectonophysics, 65: 323-338.
[27]  Zhang Y, Hobbs B E, Ord A and Mühlhaus H B. 1996. Computer simulation of single layer buckling. Journal of Structural Geology, 18: 643-655.
[28]  Zhang Y, Mancktelow N S, Hobbs B E, Ord A and Mühlhaus H B. 2000. Numerical modeling of single?layer folding: clarification of an issue regarding the possible effect of computer codes and the influence of initial irregularities. Journal of Structural Geology, 22: 1511-1522.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133