全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深部岩石力学性质及其在大陆构造变形过程研究中的作用

, PP. 276-284

Keywords: 岩石流变学,大陆构造变形过程,深部岩石,力学性质,岩石圈

Full-Text   Cite this paper   Add to My Lib

Abstract:

在阐述了与深部岩石力学性质相关的岩石流变学基本模型的基础上,探讨了深部岩石力学性质对温度、压力和岩石化学组分等因素的依赖关系。根据目前对深部岩石力学性质的认识,讨论了岩石流变学在研究大陆构造变形过程中所起的重要作用。有关研究结果表明:在运用理论分析和数值模拟方法揭示大陆岩石圈中变形的动力学机制时,合理的选用深部岩石的流变学模型是必须考虑的一个重要因素。

References

[1]  施小斌,周蒂,张毅祥. 2000. 南海北部陆缘岩石圈热-流变结构. 科学通报, 45(15): 1660-1665.
[2]  王良书,李成,刘福田,李华,卢华复. 2000. 中国东西部两类盆地岩石圈热-流变学结构. 中国科学(D辑), 30(增): 116-121.
[3]  王良书,刘绍文,李成,李华,徐鸣洁,钟锴,韩用兵. 2004. 岩石圈热-流变结构与大陆动力学. 地球科学进展,19(3):382-386
[4]  Burov E B and Watts A B. 2006. The long?term strength of continental lithosphere: "jelly sandwich" or "crème brulee"? GSA Today, 16(1): 016.
[5]  Carter N L and Tsenn M C. 1987. Flow properties of continental lithosphere. Tectonophysics, 36: 27-63.
[6]  Chen S Z. 1998. Dynamic friction Ⅱ Depth distribution of earthquakes in continental crust. Geotectonica et Metallogenia (English edition), 22(3-4): 105-127.
[7]  Cloetingh S, Fernandez M, Munoz J A, Sassi W and Horvath F. 1997. Structural controls on sedimentary basin evolution: Introduction. Tectonophysics, 282: 11-18.
[8]  Jiang Y, Zang S and Wei R. 2005. Decibel error test and flow law of multiphase rocks based on energy dissipation theory. Earth and Planetary Science Letters, 235: 200- 210
[9]  Jin Z, Zhang J, Green H W II and Jin S. 2001. Eclogite rheology: implications for subducted lithosphere. Geology, 29: 667-670.
[10]  Karato S and Wu P. 1993. Rheology of the upper mantle: A synthesis. Science, 260: 771-778.
[11]  Kohlstedt D L, Evans B and Mackwell S J. 1995. Strength of the lithosphere: Constraints imposed by laboratory experiments. Journal of Geophysical Research, 100: 17587-17602.
[12]  Maggi A, Jackson J A, McKenzie D and Priestley K. 2000. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28: 495-498.
[13]  McKenzie D, Jackson J and Priestley K. 2005. Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233: 337-349.
[14]  Paterson M S. 1978. Experimental rock deformation――the brittle field. New York:Springer.
[15]  Pearson D G, Parman, S W and Nowell G M. 2007. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature, 449: 202-205.
[16]  Ranalli G. 1995. Rheology of the Earth. London: Chapman & Hall, 2nd edition.
[17]  Ranalli G and Murphy D C. 1987. Rheological stratification of the lithosphere. Tectonophysics, 132: 281-295.
[18]  Ranalli G, Piccardo G B and Corona?Chavez P. 2007. Softening of the subcontinental lithospheric mantle by asthenosphere melts and the continental extension/oceanic spreading transition. Journal of Geodynamics, 43: 450-464.
[19]  Ranalli G and Rybach L. 2005. Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples. Journal of Volcanology and Geothermal Research, 148: 3-19.
[20]  Rapp R P, Shimizu N and Norman M D. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425: 605-609.
[21]  Schmeling H. 2000. Partial melting and melt segregation in a convecting mantle. In: Bagdassarov N et al.(eds). Physics and chemistry of partially molten rocks. Dordrecht: Kluwer Academic Publishers, 141-178.
[22]  Shimada M. 1993. Lithosphere strength inferred from fracture strength of rocks at high confining pressures and temperatures. Tectonophysics, 217: 55-64.
[23]  Sibson R H. 1974. Frictional constraints on thrust, wrench and normal faults. Nature, 249: 542-544.
[24]  Siese D M and Spiers C J. 1997. Uniaxial compaction creep of wet gypsum aggregates. Journal of Geophysical Research, 102: 875-891.
[25]  Wang Z C, Dresen G and Wirth R. 1996. Diffusion creep of fine?grained polycrystalline anorthite at high temperature. Geophysical Research Letters, 23: 3111-3114.
[26]  Watts A B and Burov E B. 2003. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213: 113-131.
[27]  Zhao C, Hobbs B E, Ord A, Hornby P, Peng S and Liu L. 2007. Mineral precipitation associated with vertical fault zones: the interaction of solute advection, diffusion and chemical kinetics. Geofluids, 7(1): 3-18.
[28]  陈胜早. 2007. 地震动力学:震源分布与岩石圈流变特性. 大地构造与成矿学,31(3):265-272.
[29]  陈孝德,林传勇,史兰斌. 2007. 华北北部下地壳的流变学特征-河北汉诺坝下地壳包体提供的信息. 中国科学(D辑), 37(7): 116-121.
[30]  樊祺诚,刘若新,李惠民,李霓,隋建立,林卓然. 1998. 汉诺坝捕掳体麻粒岩锆石年代学与稀土元素地球化学. 科学通报, 43(2): 133-137.
[31]  高山,骆庭川,张本仁,张宏飞,韩吟文,赵志丹,Kern H. 1999. 中国东部地壳的结构和组成. 中国科学(D辑), 29(3): 203-213.
[32]  金振民. 1988. 高温高压岩石变形实验及其地球动力学的意义. 地质科技情报, 7(3): 11-19.
[33]  金振民, Quan B, Kohlstedt D L , 金淑燕. 1993. 橄榄石单晶体高温蠕变. 地球科学――中国地质大学学报, 18(1): 11-19.
[34]  何丽娟,胡圣标,汪集?. 2001. 中国东部大陆地区岩石圈热结构特征. 自然科学进展, 11(9): 966-969.
[35]  嵇少丞. 1987. 钠长石的实验变形及其显微构造的研究. 矿物学报, 7(3): 193-197.
[36]  刘绍文,王良书,李成,李华,韩用兵,贾承造,魏国齐. 2003. 塔里木北缘岩石圈热-流变结构及其地球动力学意义. 中国科学(D辑), 33(9): 852-863.
[37]  刘绍文,王良书,龚育龄,李成,李华,韩用兵. 2005. 济阳坳陷岩石圈热-流变学结构及其地球动力学意义. 中国科学 (D辑), 35(9): 203-214.
[38]  刘绍文,王良书,李成,张鹏,李华. 2006. 塔里木盆地岩石圈热-流变学结构和新生代热体制. 地质学报, 80(3): 344-350.
[39]  桑祖南,周永胜,何昌荣,金振民. 2001. 辉长岩脆-塑性转化及其影响因素的高温高压实验研究. 地质力学学报, 7(2): 130-138.
[40]  桑祖南,周永胜,何昌荣,金振民. 2002. 辉长岩部分熔融实验及地质学意义. 地质科学, 37(4): 385-392.
[41]  臧绍先,李昶,宁杰远,魏荣强. 2002. 华北岩石圈三维流变结构的一种初步模型. 中国科学 (D辑), 32(7): 407-431.
[42]  张健,汪集?. 2000. 南海北部陆缘带构造扩张的深部地球动力学特征. 中国科学 (D辑), 30(6): 561-567.
[43]  赵永红, Lawlis J D , Karato S. 2001. 镍锗尖晶石位错域的高温蠕变实验研究. 地球物理学报,44(5): 686-703.
[44]  周永胜,何昌荣. 2003. 地壳主要岩石流变参数及华北地壳流变性质研究. 地震地质, 25(1): 109-122.
[45]  Afonso J C and Ranalli G. 2004. Crustal and mantle strengths in continental lithosphere: Is the jelly sandwich model obsolete? Tectonophysics, 394: 221-232.
[46]  Cloetingh S, Ziegler P A, Beekman F, Andriessen P A M, Matenco L, Bada G, Garcia?Castellanos D, Hardebol N, De′zes P and Sokoutis D. 2005. Lithospheric memory, state of stress and rheology?neotectonic controls on Europe''s intraplate continental topography. Quaternary Science Review, 24: 241-304.
[47]  England P C and McKenzie D P. 1982. A thin viscous sheet model for continental deformation. Geophysical Journal of the Royal Astronomical Society, 70: 295-321.
[48]  Goetze C and Evans B. 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophysical Journal of the Royal Astronomical Society, 59: 463-478.
[49]  Gow P, Upton P, Zhao C and Hill K. 2002. Copper?Gold mineralization in the New Guinea: Numerical modeling of collision, fluid flow and intrusion?related hydrothermal systems. Australian Journal of Earth Sciences, 49: 753-771.
[50]  Griggs D J. 1938. Deformation of single calcite crystals under high confining pressures. American Mineralogist, 23: 28-33.
[51]  He L J, Wang K L, Xiong L P and Wang J. 2001. Heat flow and thermal history of the South China Sea. Physics of the Earth and Planetary Interiors, 126 (3-4): 211-220.
[52]  Hobbs B E. 1983. Constraints on the mechanism of deformation of olivine imposed by defect chemistry. Tectonophysics, 92: 35-69.
[53]  Handy M R and Brun J P. 2004. Seismicity, structure and strength of the continental lithosphere. Earth and Planetary Science Letters, 223: 427-441.
[54]  Hu S, He L and Wang J. 2000. Heat flow in the continental area of China: A new data set. Earth and Planetary Science Letters, 179: 407-419.
[55]  Jackson J. 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA Today, 12: 4-9.
[56]  Ji S, Wirth R, Rybacki E and Jiang Z. 2000. High?temperature plastic deformation of quartz?plagioclase multi?layers by layer?normal compression. Journal of Geophysical Research, 105: 16651-16664.
[57]  Ji S C, Fan W M and Wang Y J. 2002. Generalized flow laws of polyphase rocks: An overview. Geotectonica et Metallogenia, 26(1): 1-35.
[58]  Ji S C and Xia B. 2002. Rheology of Polyphase Earth Materials. Polytechnic International Press (Canada).
[59]  Ji S C. 2004. A generalized mixture rule for estimating the viscosity of solid?liquid suspensions and mechanical properties of polyphase rocks and composite materials. Journal of Geophysical Research, 109: B10207, doi: 10.1029/2004 JB003124.
[60]  Ji S and Zhao P. 1993. Flow laws of multiphase rocks calculated from experimental data on the constituent phases. Earth and Planetary Science Letters, 117 :181-187.
[61]  Kirby S H. 1983. Rheology of the lithosphere. Reviews of Geophysics and Space Physics, 21: 1458-1487.
[62]  Karato S. 1986. Does partial melting reduce the creep strength of the upper mantle? Nature, 319: 309-310.
[63]  Piccardo G B, Zanetti A and Müntener O. 2007. Melt/peridotite interaction in the Southern Lanzo peridotite: Field, textural and geochemical evidence. Lithos, 94(1-4): 181-209.
[64]  Post A D, Tullis J and Yund R A. 1996. Effects of chemical environment on dislocation creep of quartzite. Journal of Geophysical Research, 101: 22143-22155.
[65]  Shi X, Qiu X, Xia K and Zhou D. 2003. Characteristics of surface heat flow in the South China Sea. Journal of Asian Earth Sciences, 22: 265-277.
[66]  Wong T F. 1982. Effects of temperature and pressure on failure and post?failure behavior of Westerley granite. Mechanics of Materials, (1): 3-17.
[67]  Zang S X, Wei R Q and Ning J Y. 2007. Effect of brittle fracture on the rheological structure of the lithosphere and its application in the Ordos. Tectonophysics, 429: 267-285
[68]  Zhao C, Mühlhaus H B and Hobbs B E. 1997. Finite element analysis of steady?state natural convection problems in fluid?saturated porous media heated from below. International Journal for Numerical and Analytical Methods in Geomechanics, 21: 863-881.
[69]  Zhao C, Hobbs B E and Mühlhaus H B. 1998. Finite element modelling of temperature gradient driven rock alteration and mineralization in porous rock masses. Computer Methods in Applied Mechanics and Engineering, 165: 175-187.
[70]  Zhao C, Hobbs B E, Mühlhaus H B, Ord A and Lin G. 2002. Computer simulations of coupled problems in geological and geochemical systems. Computer Methods in Applied Mechanics and Engineering, 191: 3137-3152.
[71]  Zhao C, Hobbs B E, Mühlhaus H B, Ord A and Lin G. 2003. Convective instability of three?dimensional fluid?saturated geological fault zones heated from below. Geophysical Journal International, 155: 213-220.
[72]  Zhao C, Hobbs B E, Ord A, Lin G and Mühlhaus H B. 2005. Theoretical and numerical analysis of large?scale heat transfer problems with temperature?dependent pore?fluid densities. Engineering Computations, 22: 232-252.
[73]  Zhao C, Hobbs B E, Ord A, Hornby P, Peng S and Liu L. 2006. Theoretical and numerical analyses of pore?fluid flow patterns around and within inclined large cracks and faults. Geophysical Journal International, 166(2): 970-988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133