全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国东部埃达克岩及成矿作用

, PP. 448-464

Keywords: 中国东部,埃达克岩,成因模式,成矿机制,综述

Full-Text   Cite this paper   Add to My Lib

Abstract:

埃达克岩(adakite)最初是指与俯冲洋壳部分熔融有关的一类高铝的中酸性侵入岩或火山岩。主要地球化学特点有:高Sr、低Y和Yb,轻重稀土元素强烈分异,不具有明显的Eu负异常,K2O/Na2O比值低。埃达克岩从发现、命名以来,一直是国际地学界关注的前沿课题之一。埃达克岩研究之所以方兴未艾,一则是其特殊的地球化学性质,二则是其成矿专属性。中国东部是目前国内发现埃达克岩最多的地区,主要为中生代侵入岩和火山岩,分布在长江中下游区、胶东地区及晋京辽区(或京冀区、东北区)。其中,长江中下游是重要的铜金多金属成矿带,胶东是重要的金矿带。目前,对中国东部埃达克岩成因的解释有四种模式:加厚古老下地壳的直接部分熔融、底侵玄武质下地壳部分熔融、拆沉下地壳部分熔融以及洋中脊俯冲。埃达克岩与铜金成矿的机制目前的研究还不是很透彻。一般认为埃达克质岩浆富流体、高氧逸度和基性源岩,这些特点均有利于Cu、Au等深源金属元素的萃取与富集成矿。

References

[1]  侯增谦, 潘小菲, 杨志明, 曲晓明. 2007. 初论大陆环境斑岩铜矿. 现代地质, 21(2): 332-351.
[2]  曾普胜, 李文昌, 王海平, 李红. 2006. 云南普朗印支期超大型斑岩铜矿床: 岩石学及年代学特征. 岩石学报, 22(4): 989-1000.
[3]  张华锋, 翟明国, 何中甫, 彭澎, 许保良. 2004. 胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义. 岩石学报, 20(3): 369-380.
[4]  张炯飞, 庞庆邦, 朱群, 金成洙. 2003. 试论与埃达克岩有关的热液矿床成因类型和成矿系列――以中国北方若干矿床为例. 地质与资源, 12(3): 171-176.
[5]  张旗, 王元龙, 王焰. 2001a. 燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd同位素制约. 岩石学报, 17(4): 505-513.
[6]  张旗, 秦克章, 王元龙, 张福勤, 刘红涛, 王焰. 2004a. 加强埃达克岩研究, 开创中国Cu、Au等找矿工作的新局面. 岩石学报, 20(2): 195-204.
[7]  张旗, 秦克章, 许继峰, 刘红涛, 王元龙, 王焰, 贾秀琴, 韩松. 2004b. 中国与埃达克质岩有关的矿床分布、找矿方向及找矿方法刍议. 华南地质与矿产, (2): 1-8.
[8]  张旗, 许继峰, 王焰, 肖龙, 刘红涛, 王元龙. 2004c. 埃达克岩的多样性. 地质通报, 23(Z2): 959-965.
[9]  张旗, 李承东, 王焰, 王元龙, 金惟俊, 贾秀勤, 韩松. 2005. 中国东部中生代高Sr低Yb和低Sr高Yb型花岗岩:对比及其地质意义. 岩石学报, 21(6): 1527-1537.
[10]  赵振华, 王强, 熊小林, 张海祥, 牛贺才, 许继峰, 白正华, 乔玉楼. 2006. 新疆北部的两类埃达克岩. 岩石学报, 22(5):1249-1265.
[11]  Castillo P R. 2002. The origin of some of the adakite?like and Nb?enriched lavas in southern Philippines. Acta Petrologica Sinica, 18(2): 143-151.
[12]  Castillo P R, Janney P E and Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51.
[13]  Chen B, Jahn B M and Wei C. 2002. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: Trace element and Nd?Sr isotope evidence. Lithos, 60(1-2): 67-88.
[14]  Chen B, Zhai M G and Shao J. 2003. Petrogenesis and significance of the Mesozoic North Taihang complex: Major and trace element evidence. Science in China (Series D?Earth Sciences), 46(9): 941-953.
[15]  Davis G A, Zheng Y, Wang C, Darby B J, Zhang C and Gehrels G E. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China. Geological Society of America Memoir, 194: 171-197.
[16]  Defant M J. 2002. Reply for comment by R Conner on the"Evidence suggests slab melting in arc magmas" by M Defant and P Kepezhinskas (EOS, 2001, 82:65, 68-69). EOS, 66: 256-257.
[17]  Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665.
[18]  Drummod M S and Defant M J. 1990. A model for trondhjemite?tonalite ?dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research, 95(B13): 21503-21521.
[19]  Drummond M S, Defant M J and Kepezhinskas P K. 1996. Petrogenesis of slab?derived trondhjemite?tonalite?dacite/adakite magmas. Transactions of the Royal Society of Edinburgh?Earth Sciences, 87: 205-215.
[20]  Feeley T C and Hacker M D. 1995. Intracrustal derivation of Na?rich andesitic and dacitic magmas: An example from Volcano Olague, Andean Central Volcanic Zone. Journal of Geology, 103: 213-225.
[21]  Hedenduist J W and Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519-527.
[22]  Hou Z Q, Zeng P S, Gao Y F, Du A D and Fu D M. 2006. Himalayan Cu?Mo?Au mineralization in the eastern Indo?Asian collision zone: Constraints from Re?Os dating of molybdenite. Mineralium Deposita, 41: 33-45.
[23]  Kay R W. 1978. Alertian magnesian andesite : Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4: 117-132.
[24]  Kay R W and Mpodozis C. 2001. Central Andean ore deposits linker to evolving shallow subduction systems and thickening crust. GSA Today: 4-9.
[25]  Morris P A. 1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23(5): 395-398.
[26]  Peacock S M, Rushmer T and Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1-2): 227-244.
[27]  Rapp R P, Xiao L and Shimizu N. 2002. Experimental constraints on the origin of potassium?rich adakites in eastern China. Acta Petrologica Sinica, 18(3): 293-302.
[28]  Rogers G, Saunders A D and Terrell D J. 1985. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja Califonia, Mexico. Nature, 315: 389-392.
[29]  Sajona F G, Bellon H, Maury R C, Pubellier M, Cotten J and Rangin C. 1994. Magmatic response to abrupt changes in geodynamic settings: Pliocene?Quaternary calc?alkaline and Nb?enriched lavas from Mindanao (Philippines). Tectonophysics, 237(1-2): 47-72.
[30]  Sajona F G, Maury R C, Bellon H, Cotten J, Defant M J and Pubellier M. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21(11): 1007-1010.
[31]  Sen C and Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409.
[32]  Smithies R H. 2000. The Archaean tonalite?trondhjemite?granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters, 182(1): 115-125.
[33]  Stern C R and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone. Contributions to Mineralogy and Petrology, 123(3): 263-281.
[34]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Implications for Mantle Composition and Processes, Magmatism, 42. Ocean Basins Geological Society Special Publication, 313-345.
[35]  Sun W D, Arculus R J, Kamenetsky V S and Binns R A. 2004. Release of gold?bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975-978.
[36]  Sun W D, Ding X, Hu Y H and Li X H. 2007a. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542.
[37]  Sun X M, Tang Q, Sun W D, Xu L, Zhai W, Liang J L, Liang Y H, Shen K, Zhang Z M, Zhou B and Wang F Y. 2007b. Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications. Geochimica et Cosmochimica Acta, 71(11): 2896-2905.
[38]  Tatsumi Y, Hamiton D L and Nesbitt R W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc lavas : Evidence from high?pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research, 29: 293-309.
[39]  Wang J R, Wu C J, Cai Z H, Guo Y S, Wu J C and Liu X H. 2006a. Early Paleozoic high?Mg adakite from Yindongliang in the eastern section of the North Qilian: Implications for geodynamics and Cu?Au mineralization. Acta Petrologica Sinica, 22(11): 2655-2664.
[40]  Wang Q, Wyman D A, Xu J F, Jian P, Zhao Z H, Li C F, Xu W, Ma J L and He B. 2007a. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636.
[41]  Wang Q, Wyman D A, Xu J F, Zhao Z H, Jian P, Xiong X L, Bao Z W, Li C F and Bai Z H. 2006b. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu?Au mineralization. Lithos, 89(3-4): 424-446.
[42]  Xiao L and Clemens J D. 2007. Origin of potassic (C?type) adakite magmas: Experimental and field constraints. Lithos, 95: 399-414.
[43]  Xiong X L. 2006. Trace element evidence for growth of early continental crust by melting of rutile?bearing hydrous eclogite. Geology, 34(11): 945-948.
[44]  Xiong X L, Adam J and Green T H. 2005a. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3-4): 339-359.
[45]  Xiong X L, Adam J, Green T H, Niu H C, Wu J H and Cai Z Y. 2006. Trace element characteristics of partial melts produced by melting of metabasalts at high pressures: Constraints on the formation condition of adakitic melts. Science in China Series D?Earth Sciences, 49(9): 915-925.
[46]  Xiong X L, Xia B, Xu J F, Niu H C and Xiao W S. 2005b. Na depletion in modern adakites via melt / rock reaction within the sub?arc mantle. Chemical Geology, 229(4): 273-292.
[47]  Xu J F, Shinjo R, Defant M J, Wang Q and Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30(12): 1111-1114.
[48]  Xu Y G. 2001. Thermo?tectonic destruction of the Archaean lithospheric keel beneath the Sino?Korean Craton in China: Evidence, timing and mechanism. Physics and Chemistry of the Earth Part a?Solid Earth and Geodesy, 26(9-10): 747-757.
[49]  Zhao Z H, Xiong X L, Wang Q, Wyman D A, Bao Z W, Bai Z H and Qiao Y L. 2008. Underplating?related adakites in Xinjiang Tianshan, China. Lithos, 102: 374-391.
[50]  Zhang L C, Xiao W J, Qin K Z and Zhang Q. 2006. The adakite connection of the Tuwu?Yandong copper porphyry belt, eastern Tianshan, NW China: Trace element and Sr?Nd?Pb isotope geochemistry. Mineralium Deposita, 41(2): 188-200.
[51]  冷成彪, 张兴春, 王守旭, 秦朝建, 苟体忠. 2007. 云南中旬地区两个斑岩铜矿容矿斑岩的地球化学特征――以雪鸡坪和普朗斑岩铜矿床为例. 矿物学报, 27: 414-422.
[52]  李承东, 张旗, 苗来成, 孟宪锋. 2004. 冀北中生代高Sr低Y和低Sr低Y型花岗岩:地球化学、成因及其与成矿作用的关系. 岩石学报, 20(2): 269-284.
[53]  吕古贤, 韦昌山, 郭涛, 胡宝群. 2004. 胶东矿集区金矿成矿地质事件研究初探. 黄金地质, 10(2): 1-7.
[54]  钱青. 2001. adakite的地球化学特征及成因. 岩石矿物学杂志, 20(3): 297-306.
[55]  钱青, 钟孙霖, 李通艺, 温大任. 2002. 八达岭基性岩和高Ba?Sr花岗岩地球化学特征及成因探讨:华北和大别-苏鲁造山带中生代岩浆岩的对比. 岩石学报, 18(3): 275-292.
[56]  芮宗瑶, 张洪涛, 陈仁义, 王志良, 王龙生, 王义天. 2006. 斑岩铜矿研究中若干问题探讨. 矿床地质, 25(4): 491-500.
[57]  孙卫东, 凌明星, 汪方跃, 丁兴. 2008. 太平洋板块俯冲与中国东部中生代地质事件. 矿物岩石地球化学通报, 27(3): 218-225.
[58]  王鸿祯. 1985. 中国地理图籍. 北京: 中国地图出版社, 143.
[59]  王强, 许继锋, 王建新, 赵振华, 王人镜, 邱家骧, 熊小林, 桑隆康, 彭练红. 2000. 北大别山adakite型灰色片麻岩的确定及其与超高压变质作用的关系. 科学通报, 45(10): 1017-1024.
[60]  王强, 许继锋, 赵振华. 2001a. 一种新的火成岩――埃达克岩的研究综述. 地球科学进展, 16(2): 201-208.
[61]  王强, 赵振华, 熊小林, 许继锋. 2001b. 底侵玄武质下地壳的熔融: 来自安徽沙溪adakite质富钠石英闪长玢岩的证据. 地球化学, 30(4): 353-362.
[62]  王强, 赵振华, 许继峰, 李献华, 熊小林, 包志伟, 刘义茂. 2002. 扬子地块东部燕山期埃达克质(adakite?like)岩与成矿. 中国科学D辑, 32(S1): 127-136.
[63]  王强, 许继峰, 赵振华. 2003. 强烈亏损重稀土元素的中酸性火成岩(或埃达克质岩)与Cu、Au成矿作用. 地学前缘, 10(4): 561-572.
[64]  王强, 赵振华, 许继峰, 白正华, 王建新, 刘成新. 2004. 鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比: (拆沉)下地壳熔融与斑岩铜矿的成因. 岩石学报, 20(2): 351-360.
[65]  王谦生. 1992. 中国东南浙皖地区的区域重磁场特征与地壳构造的研究. 中国东南海陆岩石圈结构与演化研究. 北京: 中国科学技术出版社, 287-294.
[66]  王焰, 张旗. 2001. 八达岭花岗杂岩的组成、地球化学特征及其意义. 岩石学报, 17(4): 533-540.
[67]  王焰, 张旗,钱青. 2000. 埃达克岩(adakite)的地球化学特征及其构造意义. 地质科学, 35(2): 251-256.
[68]  王元龙, 张旗, 王强, 刘红涛, 王焰. 2003. 埃达克质岩与Cu?Au成矿作用关系的初步探讨. 岩石学报, 19(3): 543-550.
[69]  汪洋, 邓晋福, 姬广义. 2004. 长江中下游地区早白垩世埃达克质岩的大地构造背景及其成矿意义. 岩石学报, 20(2): 297-314.
[70]  吴福元,葛文春,孙德有. 2002. 埃达克岩的概念、识别标志及其地质意义. 北京:地质出版社, 172-191.
[71]  肖龙, Robert P R, 许继峰. 2004. 深部过程对埃达克质岩石成分的制约. 岩石学报, 20(2): 219-228.
[72]  熊小林, 赵振华, 白正华, 梅厚钧, 王一先, 王强, 许继峰, 包志伟. 2001. 西天山阿吾拉勒adakite型钠质中酸性岩及地壳垂向增生. 科学通报, 17(4): 281-287.
[73]  续海金, 马昌前. 2003. 实验岩石学对埃达克岩成因的限定――兼论中国东部富钾高Sr/Y比值花岗岩类. 地学前缘, 10(4): 417-427.
[74]  杨进辉. 2000. 胶东地区金矿床成矿时代及其成矿地球动力学背景:兼论壳幔相互作用与成岩成矿. 北京:中国科学院地质与地球物理研究所, 1-133.
[75]  张炯飞, 李之彤, 金成洙. 2004. 中国东北部地区埃达克岩及其成矿意义. 岩石学报, 20(2): 361-368.
[76]  张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001b. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244.
[77]  张旗, 钱青, 王二七, 王焰, 赵太平, 郝杰, 郭光军. 2001c. 燕山中晚期的中国东部高原: 埃达克岩的启示. 地质科学, 36(2): 248-255.
[78]  张旗, 王焰, 刘伟, 王元龙. 2002. 埃达克岩的特征及其意义. 地质通报, 21(7): 431-435.
[79]  张旗, 王焰, 刘红涛, 王元龙, 李之彤. 2003. 中国埃达克岩的时空分布及其形成背景, 附:《国内关于埃达克岩的争论》. 地学前缘, 10(4): 385-400.
[80]  Atherton M P and Petford N. 1993. Generation of sodium?rich magmas from newly underplated basaltic crust. Nature, 362: 144-146.
[81]  Ge X Y, Li X H, Chen Z G and Li W P. 2002. Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China: Constrains on crustal thickness. Chinese Science Bulletin, 47(11): 962-968.
[82]  Gromet L P and Silver L. 1987. REE variations across the peninsular ranges batholith: Implications for batholithic petrogenisis and crustal growth in magmatic arcs. Journal of Petrology, 28: 75-125.
[83]  Kay S M, Ramos V A and Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab?melting prior to ridge?trench collision in southern South American. Journal of Geology, 101(6): 703-714.
[84]  Li X H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305.
[85]  Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y and Sun W D. 2009. Cretaceous ridge subduction along the Lower Yangtze River Belt, eastern China. Economic Geology, in review.
[86]  Ma C, Li Z, Ehlers C, Yang K and Renjing W. 1998. A post?collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high?pressure and ultrahigh?pressure metamorphic zone, east?central China. Lithos, 45(1-4): 431-456.
[87]  Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429.
[88]  Martin H, Smithies R H, Rapp R, Moyen J F and Champion D. 2005. An overview of adakite, tonalite?trondhjemite?granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24.
[89]  Maruyama S, Isozaki Y, Kimura G and Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc, 6(1): 121-142.
[90]  Muir R J, Weaver S D, Bradshaw J D, Eby G N and Evans J A. 1995. Geochemistry of the Cretaceous Separaton Plint Batholith, New Zealand:Granitoid magmas formed by melting of mafic lithosphere. Journal of the Geological Society, 152: 689-701.
[91]  Mungall J E. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au?rich Cu deposits. Geology, 30(10): 915-918.
[92]  Oyarzun R, Marquez A and Lillo J. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc?alkaline magmatism. Mineralium Deposita, 36: 794-798.
[93]  Peacock S M. 1990. Fluid processes in subduction zones. Science, 248: 329-337.
[94]  Petford N and Atherton M P. 1996. Na?rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37: 1491-1521.
[95]  Rapp R P. 1995. Amphibole?out phase boundary in partially melted metabasalt, its control over liquid fraction and composition and source permeability. Journal of Geophysical Research, 100: 15601-15610.
[96]  Rapp R P, Shimizu N, Norman M D and Applegate G S. 1999. Reaction between slab?derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356.
[97]  Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust?mantle recycling. Journal of Petrology, 36(4): 891-931.
[98]  Wang Q, Wyman D A, Xu J F, Zhao Z H, Jian P and Zi F. 2007b. Partial melting of thickened or delaminated lower crust in the middle of eastern China: Implications for Cu?Au mineralization. Journal of Geology, 115(2): 149-161.
[99]  Wang Q, Wyman D A, Zhao Z H, Xu J F, Bai Z H, Xiong X L, Dai T M, Li C F and Chu Z Y. 2007c. Petrogenesis of Carboniferous adakites and Nb?enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology, 236(1-2): 42-64.
[100]  Wolde B and Team G G G. 1996. Tonalite?trondhjemite?granite genesis by partial melting of newly underplated basaltic crust: An example from the Neoproterozoic Birbir magmatic arc, western Ethiopia. Precambrian Research, 76(1-2): 3-14.
[101]  Wu F Y, Lin J Q, Wilde S A, Zhang X O and Yang J H. 2005a. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119.
[102]  Wu F Y, Yang J H, Wilde S A and Zhang X O. 2005b. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1-2): 127-156.
[103]  Wyllie P J and Wolf M B. 1993. Amphibolite dehydration?melting: Sorting out the solidus. In: Prichard H M, Alabaster T and Harris N B W (eds), Magmatic Processes and Plate Tectonics. Geological Society Special Publication, 405-416.
[104]  Wyman D A, Ayer J A and Devaney J R. 2000. Niobium?enriched basalts from the Wabigoon subprovince, Canada: Evidence for adakitic metasomatism above an Archean subduction zone. Earth and Planetary Science Letters, 179(1): 21-30.
[105]  Xu J F, Wang Q, Xu Y G, Zhao Z H and Xiong X L. 2001. Geochemistry of Anjishan Intermediate?acid intrusive rocks in Ningzhen area: Constraint to origin of the magma with HREE and Y depletion. Acta Petrologica Sinica, 17(4): 576-584.
[106]  Xu J F, Wang Q and Yu X Y. 2000. Geochemistry of high?Mg andesites and adakitic andesite from the Sanchazi block of the Mian?Lue ophiolitic melange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Paleo?Tethyan crust. Geochemical Journal, 34(5): 359-377.
[107]  蔡剑辉, 阎国翰, 牟保磊, 任康绪, 宋彪, 李凤棠. 2005. 北京房山岩体锆石U?Pb年龄和Sr、Nd、Pb同位素与微量元素特征及成因探讨. 岩石学报, 21(3): 776-788.
[108]  陈斌, 翟明国, 邵济安. 2002. 太行山北段中生代岩基的成因和意义: 主要和微量元素地球化学证据. 中国科学(D辑), 32(11): 896-907.
[109]  陈江峰, 周泰禧, 李学明, Foland K A, 黄承义, 卢伟. 1993. 安徽南部燕山期中酸性侵入岩的源区锶/钕同位素制约. 地球化学, 22(3): 261-268.
[110]  陈义贤, 陈文寄. 1997. 辽西及邻区中生代火山岩-年代学、地球化学和构造背景. 北京:地震出版社, 1-279.
[111]  侯增谦, 莫宣学, 高永丰, 曲晓明, 孟祥金. 2003. 埃达克岩:斑岩铜矿的一种可能的重要含矿母岩――以西藏和智利斑岩铜矿为例. 矿床地质, 22(1): 1-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133