全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

组构数值模拟的原理及其在地学中的应用

, PP. 56-68

Keywords: 岩石组构,模拟,原理,晶体塑性理论,各向异性

Full-Text   Cite this paper   Add to My Lib

Abstract:

组构是指由岩石塑性变形导致多晶体的结晶学优势取向现象。组构的存在会增加岩石的各向异性,进而可能影响到岩石的后续变形。岩石组构包含了变形类型、运动学、变形环境、流变学特征等信息,因而成为显微构造学的重要内容。组构数值模拟是近年来得到重视的一种组构研究方法,它以晶体塑性理论为基础,利用计算机技术定量地模拟多晶岩石中组构的形成和演化。在晶体塑性理论中,晶体的塑性变形是由滑移系的剪切滑动导致的,由单晶塑性本构关系表征。多晶均匀化模型包括Sachs模型、Taylor模型、自洽模型和有限元模型,它们从不同角度描述了由单晶变形组成的多晶体变形。极图、反极图和取向分布函数被用来显示多晶体中各晶粒的空间取向。目前组构数值模拟在地学中的应用主要体现在各种单相和多相岩石的组构形成、重结晶作用下的组构形成、组构对地幔和地核地震波波速各向异性的影响等方面。

References

[1]  陈运平, 赵崇斌, 林舸. 2008. 深部岩石力学性质及其在大陆构造变形过程研究中的作用. 大地构造与成矿学, 32(3): 276-284.
[2]  嵇少丞, 钟大赉, 许志琴, 夏斌. 2008. 流变学:构造地质学和地球动力学的支柱学科. 大地构造与成矿学, 32(3): 257-264.
[3]  Bons P D and Brok B D. 2000. Crystallographic preferred orientation development by dissolution?precipitation creep. Journal of Structural Geology, 22(11): 1713-1722.
[4]  Bunge H J. 1965. Zur darstellung allgemeiner texturen. Zeitschrift für Metallkunde, 56(6): 872?874.
[5]  Canoval G R, Wenk H R and Molinari A. 1992. Deformation modelling of multi?phase polycrystals: Case of a quartz?mica aggregate. Acta Metallurgica et Materialia, 40(7): 1519-1530.
[6]  Castelnau O, Blackman D K, Lebensohn R A and Castaneda P P. 2008. Micromechanical modeling of the viscoplastic behavior of olivine. Journal of Geophysical Research, 113(B9): 35-46.
[7]  Castelnau O, Canova G R., Lebensohn R A and Duval P. 1996a. Modelling viscoplastic behavior of anisotropic polycrystalline ice with a self?consistent approach. Acta Materialia, 44(11): 4823-4834.
[8]  Castelnau O, Duval P, Lebensohn R A and Canova G R. 1996b. Viscoplastic modelling of texture development in polycrystalline ice with a self?consistent approach: Comparison with bound estimates. Journal of Geophysical Research, 101(B6): 851-868.
[9]  Kocks U F, Tome C N and Wenk H R. 1998. Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties. New York: Cambridge University Press: 1-35.
[10]  Lebensohn R A, Dawson P R, Kernc H M and Wenk H R. 2003. Heterogeneous deformation and texture development in halite polycrystals: Comparison of different modeling approachesand experimental data. Tectonophysics, 370(1): 287-311.
[11]  Lebensohn R A, Montagnat M, Mansuy P, Duval P, Meysonnier J and Philip A. 2009. Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals. Acta Materialia, 57(5): 1405-1415.
[12]  Lebensohn R A and Toms C N. 1994. A self?consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals. Materials Science and Engineering, 175(1): 71-82.
[13]  Lebensohn R A, Wenk H R and Toms C N. 1998. Modelling deformation and recrystallization textures in calcite. Acta Materialia, 46(8): 2683-2693.
[14]  Leiss B, Ullemeyer K and Weber K. 2000. Introduction to the special issue: Textures and physical properties of rock. Journal of Structural Geology, 22(11): 1527-1529.
[15]  Lister G S and Hobs B E. 1980. The simulation of fabric development during plastic deformation and its application to quartzite: The influence of deformation history. Journal of Structural Geology, 2(3): 355-370.
[16]  Lister G S and Paterson M S. 1979. The simulation of fabric development during plastic deformation and its application to quartzite: Fabric transitions. Journal of Structural Geology, 1(2): 99-115.
[17]  Lister G S, Paterson M S and Hobs B E. 1978. The simulation of fabric development during plastic deformation and its application to quartzite: The model. Tectonophysics, 45(2): 107-158.
[18]  Mendelson K S and Cohen M H. 1982. The effect of grain anisotropy on the electrical properties of sedimentary rocks. Geophysics, 47(2): 257-269.
[19]  Mika D P and Dawson P R. 1999. Polycrystal plasticity modeling of intracrystalline boundary textures. Acta Materiali, 47(4): 1355-1369.
[20]  Molinari A, Ahzi S and Kouddane R. 1997. On the self?consistent modeling of elastic?plastic behavior of polycrystals. Mechanics of Materials, 26(1): 43-62.
[21]  Molinari A, Canova G R and Ahzi S. 1987. A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metallurgica, 35(12): 2983-2994.
[22]  Nemat?Nasser S, Ni L and Okinaka T. 1998. A constitutive model for fcc crystals with application to polycrystalline OFHC copper. Mechanics of Materials, 30(4): 325-341.
[23]  Nemat?Nasser S and Okinaka T. 1996. A new computational approach to crystal plasticity: Fcc single crystal. Mechanics of Materials, 24(1): 43-57.
[24]  Romanowicz B, Li X D and Durek J C. 1996. Anisotropy in the inner core: Could it be due to low?order convection. Science, 274(5289): 963-966.
[25]  Sachs G. 1928. Zur ableitung einer fliessbedingung. Zeichschrift der Verein deutscher Ingenieur, 72(734): 152-168.
[26]  Sarma G B and Dawson P R. 1996. Texture predictions using a polycrystal plasticity model incorporating neighbor interactions. International Journal of Plasticity, 12(8): 1023-1054.
[27]  Schmid E. 1924. Yield point of crystals, critical shear stress law // Proceedings of the First International Congress for Applied Mechanics, Delft.
[28]  Signorelli J, Loge R, Bolmaro R and Tommasi A. 2010. Modelling deformation and recrystallization shear textures in olivine. Mecánica Computacional, 6: 2883-2899.
[29]  Song X. 1996. Anisotropy in central part of inner core. Journal of Geophysical Research, 101(D7): 89-97.
[30]  Taylor G I. 1938. Plastic strain in metals. Journal of the Institute of Metals, 62(307): 307?324.
[31]  Tommasi A. 1998. Forward modeling of the development of seismic anisotropy in the upper mantle. Earth and Planetary Science Letters, 160(1): 1-13.
[32]  Tommasi A, Mainprice D, Canova G and Chastel Y. 2000. Viscoplastic self?consistent and equilibrium?based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy. Journal of GeophysicalResearch, 105(B4): 7893-7908.
[33]  Tommasi A, Tikoff B and Vauchez A. 1999. Upper mantle tectonics: Three?dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth and Planetary Science Letters, 168(1): 173-186.
[34]  Tromp J. 2001. Inner Core Anisotropy and Rotation. Geophysical monograph, 29: 47-69.
[35]  Wenk H R. 1986. Plastic anisotropy and texture development in calcite polycrystals. Journal of Geophysical Research, 91(B3): 3861-3869.
[36]  Wenk H R. 1989. Viscoplastic modeling of texture development in quartzite. Journal of Geophysical Research, 94(B12): 895-906.
[37]  Wenk H R. 1999. A voyage through the deformed Earth with the self?consistent model. Modelling and Simulation in Materials Science and Engineering, 7: 699-722.
[38]  Wenk H R, Armann M, Burlini L, Kunze K and Bortolotti M. 2009. Large strain shearing of halite: Experimental and theoretical evidence for dynamic texture changes. Earth and Planetary Science Letters, 280(4): 205-210.
[39]  Wenk H R, Baumgardner J R and Lebensohn R. 2000b. A convection model to explain anisotropy of the inner core. Journal of Geophysical Research, 105(B3): 5663-5677.
[40]  Wenk H R, Bennett K, Molinari A and Mecking H. 1991. Modelling plastic deformation of peridotite with the self?consistent theory. Journal of Geophysical Research, 96(B5): 8337-8349.
[41]  Wenk H R, Canova G, Brechet Y and Flandin L. 1997. A deformation?based model for recrystallization of anisotropic materials. Acta Materialia, 45(8): 3283-3296.
[42]  Wenk H R, Canova G, Molinari A and Mecking H. 1989. Texture development in halite: Comparison of Taylor model and self?consistent theory. Acta Metallurgica, 37(7): 2017-2029.
[43]  Wenk H R and Christie J M. 1991. Comments on the interpretation of deformation textures in rocks. Journal of Structural Geology, 13(10): 1091-1110.
[44]  Wenk H R and Van Houtte P. 2004. Texture and Anisotropy. Reports on Progress in Physics, 67: 1367-1428.
[45]  Wenk H R, Matthies S R, Hemley J, Mao H K and Shu J. 2000a. The plastic deformation of iron at pressures of the Earth''s inner core. Nature, 405: 1044-1047.
[46]  Wenk H R, Takeshita T, Bechler E, Erskine B G and Matthies S. 1987. Pure shear and simple shear calcite textures: Comparison of experimental, theoretical and natural data. Journal of Structural Geology, 9(5): 731-745.
[47]  梁志德, 徐家祯, 王福. 1986. 组构材料的三维取向分析术. 沈阳: 东北工学院出版社: 1-45.
[48]  毛卫民, 张新明. 1995. 晶体材料组构定量分析. 北京: 冶金工业出版社: 1-25.
[49]  孙圣思,嵇少丞. 2011. 大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制. 大地构造与成矿学, 35(4): 628-647.
[50]  王自强, 段祝平. 1995. 塑性细观力学. 北京: 科学出版社: 90-150.
[51]  夏浩然, 刘俊来. 2011. 石英结晶学优选与应用. 地质通报, 30(1): 58-70.
[52]  杨平. 2007. 电子背散射衍射技术及其应用. 北京: 冶金工业出版社: 36-60.
[53]  庄茁. 2002. 连续体和结构的非线性有限元. 北京: 清华大学出版社: 70-82.
[54]  Asaro R J and Needleman A. 1985. Texture development and strain hardening in rate dependent polycrystals. Acta Metall, 33(6): 923-953.
[55]  Beaudoia A J, Dawson P R , Mathur K K and Kock U F. 1995. A hybrid finite element formulation for polycrystal plasticity with consideration of macrostructural and microstructural linking. International Journal of Plasticity, 11(5): 501-521.
[56]  Bishop J F W and Hill R. 1951. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philosophical Magazine, 42(19): 414-427.
[57]  Chastel Y B, Dawson P R, Wenk H R and Bennett K. 1993. Anisotropic convection with implications for the upper mantle. Journal of Geophysical Research, 98(B10): 757-771.
[58]  Dawson P R. 2002. Modeling deformation of polycrystalline rocks. Reviews in Mineralogy and Geochemistry, 51(1): 331-351.
[59]  Dawson P R and Wenk H R. 2000. Texturing of the upper mantle during convection. Philosophical Magazine A, 80(3): 573-598.
[60]  Havner K S. 1992. Finite plastic deformation of crystalline solids. New York: Cambridge University Press: 34-38.
[61]  Hess H H. 1964. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203: 629-631.
[62]  Kaminski é and Ribe N M. 2001. A kinematic model for recrystallization and texture development in olivine polycrystals. Earth and Planetary Science Letters, 189(3): 253-267.
[63]  Kern H and Wenk H R. 1983. Calcite texture development in experimentally induced ductile shear zones. Contributions to Mineralogy and Petrology, 83(3): 231-236.
[64]  Khan M A. 1962. Anisotropy of magnetic susceptibility of some igneous and metamorphic rocks. Journal of Geophysical Research, 67(7): 2873-2885.
[65]  Owens W H and Bamford D. 1976. Magnetic seismic and other anisotropic properties of rock fabrics. Philosophical Transactions of the Royal Society, 283(1312): 55-68.
[66]  Roe R. 1965. Description of crystalline orientation of polycrystalline materials. General solution to pole figure inversion. Journal of Applied Physics, 36(15): 2024?2031.
[67]  Zhang S Q and Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375: 774-777.
[68]  Zhang Y, Hobbs B E and Ord A. 1994. A numerical simulation of fabric development in polycrystalline aggregates with one slip system. Journal of Structural Geology, 16(9): 1297-1313.
[69]  Zhang Y and Wilson C J L. 1997. Lattice rotation in polycrystalline aggregates and single crystals with one slip system: A numerical and experimental approach. Journal of Structural Geology, 19(6): 875-885.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133