[1] | 陈运平, 赵崇斌, 林舸. 2008. 深部岩石力学性质及其在大陆构造变形过程研究中的作用. 大地构造与成矿学, 32(3): 276-284.
|
[2] | 嵇少丞, 钟大赉, 许志琴, 夏斌. 2008. 流变学:构造地质学和地球动力学的支柱学科. 大地构造与成矿学, 32(3): 257-264.
|
[3] | Bons P D and Brok B D. 2000. Crystallographic preferred orientation development by dissolution?precipitation creep. Journal of Structural Geology, 22(11): 1713-1722.
|
[4] | Bunge H J. 1965. Zur darstellung allgemeiner texturen. Zeitschrift für Metallkunde, 56(6): 872?874.
|
[5] | Canoval G R, Wenk H R and Molinari A. 1992. Deformation modelling of multi?phase polycrystals: Case of a quartz?mica aggregate. Acta Metallurgica et Materialia, 40(7): 1519-1530.
|
[6] | Castelnau O, Blackman D K, Lebensohn R A and Castaneda P P. 2008. Micromechanical modeling of the viscoplastic behavior of olivine. Journal of Geophysical Research, 113(B9): 35-46.
|
[7] | Castelnau O, Canova G R., Lebensohn R A and Duval P. 1996a. Modelling viscoplastic behavior of anisotropic polycrystalline ice with a self?consistent approach. Acta Materialia, 44(11): 4823-4834.
|
[8] | Castelnau O, Duval P, Lebensohn R A and Canova G R. 1996b. Viscoplastic modelling of texture development in polycrystalline ice with a self?consistent approach: Comparison with bound estimates. Journal of Geophysical Research, 101(B6): 851-868.
|
[9] | Kocks U F, Tome C N and Wenk H R. 1998. Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties. New York: Cambridge University Press: 1-35.
|
[10] | Lebensohn R A, Dawson P R, Kernc H M and Wenk H R. 2003. Heterogeneous deformation and texture development in halite polycrystals: Comparison of different modeling approachesand experimental data. Tectonophysics, 370(1): 287-311.
|
[11] | Lebensohn R A, Montagnat M, Mansuy P, Duval P, Meysonnier J and Philip A. 2009. Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals. Acta Materialia, 57(5): 1405-1415.
|
[12] | Lebensohn R A and Toms C N. 1994. A self?consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals. Materials Science and Engineering, 175(1): 71-82.
|
[13] | Lebensohn R A, Wenk H R and Toms C N. 1998. Modelling deformation and recrystallization textures in calcite. Acta Materialia, 46(8): 2683-2693.
|
[14] | Leiss B, Ullemeyer K and Weber K. 2000. Introduction to the special issue: Textures and physical properties of rock. Journal of Structural Geology, 22(11): 1527-1529.
|
[15] | Lister G S and Hobs B E. 1980. The simulation of fabric development during plastic deformation and its application to quartzite: The influence of deformation history. Journal of Structural Geology, 2(3): 355-370.
|
[16] | Lister G S and Paterson M S. 1979. The simulation of fabric development during plastic deformation and its application to quartzite: Fabric transitions. Journal of Structural Geology, 1(2): 99-115.
|
[17] | Lister G S, Paterson M S and Hobs B E. 1978. The simulation of fabric development during plastic deformation and its application to quartzite: The model. Tectonophysics, 45(2): 107-158.
|
[18] | Mendelson K S and Cohen M H. 1982. The effect of grain anisotropy on the electrical properties of sedimentary rocks. Geophysics, 47(2): 257-269.
|
[19] | Mika D P and Dawson P R. 1999. Polycrystal plasticity modeling of intracrystalline boundary textures. Acta Materiali, 47(4): 1355-1369.
|
[20] | Molinari A, Ahzi S and Kouddane R. 1997. On the self?consistent modeling of elastic?plastic behavior of polycrystals. Mechanics of Materials, 26(1): 43-62.
|
[21] | Molinari A, Canova G R and Ahzi S. 1987. A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metallurgica, 35(12): 2983-2994.
|
[22] | Nemat?Nasser S, Ni L and Okinaka T. 1998. A constitutive model for fcc crystals with application to polycrystalline OFHC copper. Mechanics of Materials, 30(4): 325-341.
|
[23] | Nemat?Nasser S and Okinaka T. 1996. A new computational approach to crystal plasticity: Fcc single crystal. Mechanics of Materials, 24(1): 43-57.
|
[24] | Romanowicz B, Li X D and Durek J C. 1996. Anisotropy in the inner core: Could it be due to low?order convection. Science, 274(5289): 963-966.
|
[25] | Sachs G. 1928. Zur ableitung einer fliessbedingung. Zeichschrift der Verein deutscher Ingenieur, 72(734): 152-168.
|
[26] | Sarma G B and Dawson P R. 1996. Texture predictions using a polycrystal plasticity model incorporating neighbor interactions. International Journal of Plasticity, 12(8): 1023-1054.
|
[27] | Schmid E. 1924. Yield point of crystals, critical shear stress law // Proceedings of the First International Congress for Applied Mechanics, Delft.
|
[28] | Signorelli J, Loge R, Bolmaro R and Tommasi A. 2010. Modelling deformation and recrystallization shear textures in olivine. Mecánica Computacional, 6: 2883-2899.
|
[29] | Song X. 1996. Anisotropy in central part of inner core. Journal of Geophysical Research, 101(D7): 89-97.
|
[30] | Taylor G I. 1938. Plastic strain in metals. Journal of the Institute of Metals, 62(307): 307?324.
|
[31] | Tommasi A. 1998. Forward modeling of the development of seismic anisotropy in the upper mantle. Earth and Planetary Science Letters, 160(1): 1-13.
|
[32] | Tommasi A, Mainprice D, Canova G and Chastel Y. 2000. Viscoplastic self?consistent and equilibrium?based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy. Journal of GeophysicalResearch, 105(B4): 7893-7908.
|
[33] | Tommasi A, Tikoff B and Vauchez A. 1999. Upper mantle tectonics: Three?dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth and Planetary Science Letters, 168(1): 173-186.
|
[34] | Tromp J. 2001. Inner Core Anisotropy and Rotation. Geophysical monograph, 29: 47-69.
|
[35] | Wenk H R. 1986. Plastic anisotropy and texture development in calcite polycrystals. Journal of Geophysical Research, 91(B3): 3861-3869.
|
[36] | Wenk H R. 1989. Viscoplastic modeling of texture development in quartzite. Journal of Geophysical Research, 94(B12): 895-906.
|
[37] | Wenk H R. 1999. A voyage through the deformed Earth with the self?consistent model. Modelling and Simulation in Materials Science and Engineering, 7: 699-722.
|
[38] | Wenk H R, Armann M, Burlini L, Kunze K and Bortolotti M. 2009. Large strain shearing of halite: Experimental and theoretical evidence for dynamic texture changes. Earth and Planetary Science Letters, 280(4): 205-210.
|
[39] | Wenk H R, Baumgardner J R and Lebensohn R. 2000b. A convection model to explain anisotropy of the inner core. Journal of Geophysical Research, 105(B3): 5663-5677.
|
[40] | Wenk H R, Bennett K, Molinari A and Mecking H. 1991. Modelling plastic deformation of peridotite with the self?consistent theory. Journal of Geophysical Research, 96(B5): 8337-8349.
|
[41] | Wenk H R, Canova G, Brechet Y and Flandin L. 1997. A deformation?based model for recrystallization of anisotropic materials. Acta Materialia, 45(8): 3283-3296.
|
[42] | Wenk H R, Canova G, Molinari A and Mecking H. 1989. Texture development in halite: Comparison of Taylor model and self?consistent theory. Acta Metallurgica, 37(7): 2017-2029.
|
[43] | Wenk H R and Christie J M. 1991. Comments on the interpretation of deformation textures in rocks. Journal of Structural Geology, 13(10): 1091-1110.
|
[44] | Wenk H R and Van Houtte P. 2004. Texture and Anisotropy. Reports on Progress in Physics, 67: 1367-1428.
|
[45] | Wenk H R, Matthies S R, Hemley J, Mao H K and Shu J. 2000a. The plastic deformation of iron at pressures of the Earth''s inner core. Nature, 405: 1044-1047.
|
[46] | Wenk H R, Takeshita T, Bechler E, Erskine B G and Matthies S. 1987. Pure shear and simple shear calcite textures: Comparison of experimental, theoretical and natural data. Journal of Structural Geology, 9(5): 731-745.
|
[47] | 梁志德, 徐家祯, 王福. 1986. 组构材料的三维取向分析术. 沈阳: 东北工学院出版社: 1-45.
|
[48] | 毛卫民, 张新明. 1995. 晶体材料组构定量分析. 北京: 冶金工业出版社: 1-25.
|
[49] | 孙圣思,嵇少丞. 2011. 大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制. 大地构造与成矿学, 35(4): 628-647.
|
[50] | 王自强, 段祝平. 1995. 塑性细观力学. 北京: 科学出版社: 90-150.
|
[51] | 夏浩然, 刘俊来. 2011. 石英结晶学优选与应用. 地质通报, 30(1): 58-70.
|
[52] | 杨平. 2007. 电子背散射衍射技术及其应用. 北京: 冶金工业出版社: 36-60.
|
[53] | 庄茁. 2002. 连续体和结构的非线性有限元. 北京: 清华大学出版社: 70-82.
|
[54] | Asaro R J and Needleman A. 1985. Texture development and strain hardening in rate dependent polycrystals. Acta Metall, 33(6): 923-953.
|
[55] | Beaudoia A J, Dawson P R , Mathur K K and Kock U F. 1995. A hybrid finite element formulation for polycrystal plasticity with consideration of macrostructural and microstructural linking. International Journal of Plasticity, 11(5): 501-521.
|
[56] | Bishop J F W and Hill R. 1951. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philosophical Magazine, 42(19): 414-427.
|
[57] | Chastel Y B, Dawson P R, Wenk H R and Bennett K. 1993. Anisotropic convection with implications for the upper mantle. Journal of Geophysical Research, 98(B10): 757-771.
|
[58] | Dawson P R. 2002. Modeling deformation of polycrystalline rocks. Reviews in Mineralogy and Geochemistry, 51(1): 331-351.
|
[59] | Dawson P R and Wenk H R. 2000. Texturing of the upper mantle during convection. Philosophical Magazine A, 80(3): 573-598.
|
[60] | Havner K S. 1992. Finite plastic deformation of crystalline solids. New York: Cambridge University Press: 34-38.
|
[61] | Hess H H. 1964. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203: 629-631.
|
[62] | Kaminski é and Ribe N M. 2001. A kinematic model for recrystallization and texture development in olivine polycrystals. Earth and Planetary Science Letters, 189(3): 253-267.
|
[63] | Kern H and Wenk H R. 1983. Calcite texture development in experimentally induced ductile shear zones. Contributions to Mineralogy and Petrology, 83(3): 231-236.
|
[64] | Khan M A. 1962. Anisotropy of magnetic susceptibility of some igneous and metamorphic rocks. Journal of Geophysical Research, 67(7): 2873-2885.
|
[65] | Owens W H and Bamford D. 1976. Magnetic seismic and other anisotropic properties of rock fabrics. Philosophical Transactions of the Royal Society, 283(1312): 55-68.
|
[66] | Roe R. 1965. Description of crystalline orientation of polycrystalline materials. General solution to pole figure inversion. Journal of Applied Physics, 36(15): 2024?2031.
|
[67] | Zhang S Q and Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375: 774-777.
|
[68] | Zhang Y, Hobbs B E and Ord A. 1994. A numerical simulation of fabric development in polycrystalline aggregates with one slip system. Journal of Structural Geology, 16(9): 1297-1313.
|
[69] | Zhang Y and Wilson C J L. 1997. Lattice rotation in polycrystalline aggregates and single crystals with one slip system: A numerical and experimental approach. Journal of Structural Geology, 19(6): 875-885.
|