全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学

, PP. 93-101

Keywords: C、O同位素,稀土元素,成矿流体来源,天桥铅锌矿床

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用连续流动质谱和电感耦合等离子体质谱(ICP?MS)对黔西北天桥铅锌矿床原生矿石中脉石矿物热液方解石C、O同位素组成和稀土元素含量进行了分析,结果表明热液方解石C、O同位素组成相对均一,不同标高方解石C、O同位素组成不具明显差别,其δ13CPDB和δ18OSMOW分别为-3.4‰~-5.3‰和14.7‰~19.5‰,在δ13CPDB?δ18OSMOW图上介于原始碳酸岩与海相碳酸盐岩之间。热液方解石总稀土元素含量较低(ΣREE=6.80×10-6~49.1×10-6),表现为轻稀土富集、Eu负异常的“M”型,其Eu/Eu*变化范围为0.30~0.55,与硫化物具有相似的稀土配分模式。根据热液方解石与蚀变围岩、远矿围岩及不同时代地层碳酸盐岩的C、O同位素组成和REE含量特征对比结果,结合前人研究成果,认为该矿床成矿流体具“多来源混合”特征,其中围岩碳酸盐岩为成矿流体提供了主要的C和REE来源,地层中膏岩海相硫酸盐岩为成矿流体提供了主要的S来源,而成矿流体中的水则主要为变质基底昆阳群等提供的变质水,并受到大气降水的影响。

References

[1]  王中刚, 于学元, 赵振华. 1989. 稀土元素地球化学. 北京: 科学出版社: 30-96.
[2]  郑传伦. 1992. 黔西北铅锌矿区控矿构造研究. 矿产地质, 6(3):193-200.
[3]  周家喜, 黄智龙, 周国富, 李晓彪, 丁伟, 谷静. 2009. 贵州天桥铅锌矿床分散元素赋存状态及规律. 矿物学报, 29(4): 471-480.
[4]  朱赖明. 1999. 黔西北沉积改造型铅锌矿床成矿物质来源研究 // 资源环境与可持续发现. 北京: 科学出版社: 136.
[5]  Bau M. 1991. Rare?earth element mobility during hydrothermal and metamorphic fluid?rock interaction and the significance of the oxidation state of europium. Chem Geol, 93(3-4): 219-230.
[6]  Boynton W V. 1984. Cosmochemistry of the rare earth elements meteorite studies//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elevier: 63-114.
[7]  Chen Y J and Fu S G. 1991. Variation of REE patterns in early Precambrian sediments: Theoretical study and evidence from the southern margin of the northern China craton. Chin Sci Bull, 36 (l3): l100-ll04.
[8]  Chen Y J and Zhao Y C. 1997. Geochemical characteristics and evolution of REE in the Early Precam brian sediments: Evidences from the southern margin of the North China craton. Episodes, 20: l09-ll6.
[9]  Hecht L, Freiberger R, Gilg T A, Grundmann G and Kostitsyn Y A. 1999. Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: Genetic implications for dolomite?hosted talc mineralization at G?pfersgrün (Fichtelgebirge, Germany). Chem Geol, 155: 115-13
[10]  Hoefs J. 1997. Stable isotope geochemistry. Berlin: Spring Verlag (4th ed): 65-168.
[11]  Huang Z L, Li W B, Chen J and Han R S. 2003. Carbon and oxygen isotope constraints on mantle fluid involvement in the mineralization of the Huize super?large Pb?Zn deposits, Yunnan Province, China. J Geochem Explor, 78-79: 637-642
[12]  Huang Z L, Li X B, Zhou M F, Li W B and Jin Z G. 2010. REE and C?O isotopic geochemistry of calcites from the world?class Huize Pb?Zn deposits, Yunnan, China: Implications for the ore genesis. Acta Geologica Sinica (English Edition), 84(3):597-613.
[13]  Li W B, Huang Z L and Qi L. 2007. REE geochemistry of sulfides from the Huize Zn?Pb ore field, Yunnan Province: Implication for the sources of ore?forming metals. Acta Geologica Sinica (English Edition), 81(3): 442- 449.
[14]  Ma Y J and Liu C Q. 1999. Trace element geochemistry during weathering as exemplified by the weathered crust of granite, Longnan, Jiangxi. Chin Sci Bull, 44:2260-2263.
[15]  Qi L, Hu J and Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51:507-513
[16]  Spangenberg J, Fontbote L and Sharp Z D. 1996. Carbon and oxygen isotope study of hydrothermal carbonates in the zinc?lead deposits of the San Vicente district, central Peru: a quantitative modeling on mixing processes and CO2 degassing. Chem Geol, 133(1-4): 289-315.
[17]  Zheng Y F. 1990. Carbon?oxygen isotopic covariations in hydrothermal calcite during degassing of CO2: A quantitative evaluation and application to the Kushikino gold mining area in Japan. Mineralium Deposita, 25: 246-250.
[18]  陈觅, 刘俊安, 赵生贵, 吴兵, 孙载波. 2011. 贵州天桥铅锌矿床REE地球化学特征. 矿物学报, 31(3): 360-365.
[19]  陈士杰. 1986. 黔西滇东北铅锌矿成因探讨. 贵州地质, 3(3): 211-222.
[20]  顾尚义. 2006. 黔西北铅锌矿稀土元素组成特征――兼论黔西北地区铅锌矿成矿与峨眉山玄武岩的关系. 贵州地质, 23(4): 274-277.
[21]  黄智龙, 陈进, 韩润生, 李文博, 刘从强, 张振亮, 马德云, 高德荣, 杨海林. 2004a. 云南会泽超大型铅锌矿床地球化学及成因――兼论峨眉山玄武岩与铅锌成矿的关系. 北京: 地质出版社: 28-58.
[22]  黄智龙, 李文博, 陈进, 许德如, 韩润生, 刘从强. 2004b. 云南会泽超大型铅锌矿床C、O同位素地球化学. 大地构造与成矿学, 28(1): 53-59.
[23]  金中国. 2008. 黔西北地区铅锌矿控矿因素、成矿规律与找矿预测. 北京: 冶金工业出版社: 24-96.
[24]  刘家军, 何明勤, 李志明. 2004. 云南白秧坪银铜多金属矿集区同位素组成及其意义.矿床地质, 23(1):1-10.
[25]  毛德明. 2000. 贵州赫章天桥铅锌矿床围岩的氧-碳同位素研究. 贵州工业大学学报(自然科学版), 29(2):8-11.
[26]  毛德明. 2001. 黔西北铅锌矿床REE特征及其意义. 贵州地质, 18(1): 12-17.
[27]  王华云. 1993. 贵州铅锌矿的地球化学特征. 贵州地质, 10(4): 272-290.
[28]  郑永飞. 2001. 稳定同位素体系理论模型及其矿床地球化学应用. 矿床地质, 20(1):57-70.
[29]  周家喜, 黄智龙, 周国富, 金中国, 李晓彪, 丁伟, 谷静. 2010. 黔西北赫章天桥铅锌矿床成矿物质来源: S、Pb同位素和REE制约. 地质论评, 56(4):513-524.
[30]  Zheng Y F and Hoefs J. 1993. Carbon and oxygen isotopic covariations in hydrothermal calcites. Mineralium Deposita, 28: 79-89.
[31]  Zhou J X, Huang Z L, Zhou G F, Li X B, Ding W and Bao G P. 2010. Sulfur isotopic compositions of the Tianqiao Pb?Zn ore deposit, Guizhou Province, China: Implications for the source of sulfur in the ore ?forming fluids. Chinese Journal of Geochemistry, 29(3): 301-306.
[32]  Zhou J X, Huang Z L, Zhou G F, Li X B, Ding W and Bao G P. 2011. The trace elements and rare earth elements geochemistry of sulfide minerals of the Tianqiao Pb?Zn ore deposit, Guizhou Province, China. Acta Geologica Sinica (English Edition), 85(1):189-199.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133