Ayres M and Harris N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites. Chemical Geology, 139(1): 249?269.
[17]
Cai K, Sun M, Yuan C, Xiao W J, Zhao G C, Long X P and Wu F Y. 2012. Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic belt. Gondwana Research, 22(2): 681?698.
[18]
Cai K D, Sun M, Yuan C, Zhao G C, Xiao W J, Long X P and Wu F Y. 2011. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences, 42(5): 949?968.
[19]
Mao J W, Pirajno F, Zhang Z H, Chai F M, Wu H, Chen S P, Cheng L S, Yang J M and Zhang C Q. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2?4): 184?203.
[20]
Nabelek P I and Bartlett C D. 1998. Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks. Lithos, 45(1): 71?85.
[21]
Noble S and Searle M. 1995. Age of crustal melting and leucogranite formation from U-Pb zircon and monazite dating in the western Himalaya, Zanskar, India. Geology, 23(12): 1135?1138.
[22]
Searle M, Parrish R, Hodges K, Hurford A, Ayres M and Whitehouse M. 1997. Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. The Journal of Geology, 105(3): 295?318.
[23]
Zhang Z H, Mao J, Du A, Pirajno F, Wang Z, Chai F, Zhang Z and Yang J. 2008b. Re-Os dating of two Cu-Ni sulfide deposits in northern Xinjiang, NW China and its geological significance. Journal of Asian Earth Sciences, 32(2?4): 204?217.
Chung S L, Chu M F, Zhang Y, Xie Y, Lo C H, Lee T Y, Lan C Y, Li X, Zhang Q and Wang Y. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3): 173?196.
[48]
Guillot S and Le Fort P. 1995. Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 35(3): 221? 234.
[49]
Han B F, Wang S G, Jahn B M, Hong D W, Kagami H and Sun Y L. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138(3?4): 135?159.
[50]
Jahn B M, Windley B, Natal’in B and Dobretsov N. 2004. Phanerozoic continental growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599?603.
[51]
Le Fort P. 1981. Manaslu leucogranite: A collision signature of the Himalaya a model for its genesis and emplacement. Journal of Geophysical Research, 86(B11): 10545?10568.
[52]
Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard S, Upreti B and Vidal P. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134(1): 39?57.
[53]
Liégeois J P. 1998. Preface―Some words on the post-collisional magmatism. Lithos, 45(1?4): 15?17.
[54]
Liu W, Liu X J and Xiao W J. 2012. Massive granitoid production without massive continental-crust growth in the Chinese Altay: Insight into the source rock of granitoids using integrated zircon U-Pb age, Hf-Nd-Sr isotopes and geochemistry. American Journal of Science, 312(6): 629?684.
[55]
Liu Y S, Gao S, Gao C G, Wang D B, Zong K Q and Hu Z C. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1?2): 537?571.
[56]
Ludwig K R. 2003. Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1?71.
[57]
Shen X M, Zhang H X, Wang Q, Wyman D A and Yang Y H. 2011. Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of "A2-type" granites. Journal of Asian Earth Sciences, 42(5): 986?1007.
[58]
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1): 29?44.
[59]
van de Flierdt T, Hoernes S, Jung S, Masberg P, Hoffer E, Schaltegger U and Friedrichsen H. 2003. Lower crustal melting and the role of open-system processes in the genesis of syn-orogenic quartz diorite-granite- leucogranite associations: Constraints from Sr-Nd-O isotopes from the Bandombaai Complex, Namibia. Lithos, 67(3): 205?226.
[60]
Vilà M, Pin C, Enrique P and Liesa M. 2005. Telescoping of three distinct magmatic suites in an orogenic setting: Generation of Hercynian igneous rocks of the Albera Massif (Eastern Pyrenees). Lithos, 83(1): 97?127.
[61]
Wang T, Hong D W, Jahn B M, Tong Y, Wang Y B, Han B F and Wang X X. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, northwest China: Implications for the tectonic evolution of an accretionary orogen. Journal of Geology, 114(6): 735?751.
[62]
Wang T, Jahn B M, Kovach V P, Tong Y, Hong D W and Han B F. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos, 110(1?4): 359?372.
[63]
Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Oberli F, Quadt A, Roddick J and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1?23.
[64]
Windley B F, Kroener A, Guo J, Qu G, Li Y and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai Orogen, NW China: New zircon age data and tectonic evolution. The Journal of Geology, 110(6): 719?737.
[65]
Xiao W J, Han C M, Yuan C, Sun M, Lin S F, Chen H L, Li Z L, Li J L and Sun S. 2008. Middle Cambrian to Permian subduction- related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2?4): 102?117.
[66]
Xiao W J, Windley B F and Yuan C. 2009. Paleozoic mutiple subduction-accretion processes of the Southern Altaids. American Journal of Science, 309: 221?270.
[67]
Zhang Z C, Mao J W, Cai J, Kusky T M, Zhou G, Yan S and Zhao L. 2008a. Geochemistry of picrites and associated lavas of a Devonian island arc in the northern Junggar terrane, Xinjiang (NW China): Implications for petrogenesis, arc mantle sources and tectonic setting. Lithos, 105(3?4): 379?395.
[68]
Zhang Z C, Zhou G, Kusky T M, Yan S G, Chen B L and Zhao L. 2009. Late Paleozoic volcanic record of the eastern Junggar Terrane, Xinjiang, northwestern China: Major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution. Gondwana Research, 16(2): 201?215.