全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义

, PP. 685-697

Keywords: A型花岗岩,锆石U-Pb年龄,地球化学特征,构造环境,东昆仑,夏日哈木

Full-Text   Cite this paper   Add to My Lib

Abstract:

夏日哈木矿区的正长花岗岩体呈岩株状出露于矿区北部。年代学研究表明,正长花岗岩中岩浆锆石LA-MC-ICP-MSU-Pb加权平均年龄为391.1±1.4Ma,MSWD=0.06,属早泥盆世。岩石学及化学成分显示其属于高钾钙碱性、弱过铝质系列花岗岩。岩体高硅(SiO2=75.55%~76.10%)、富碱(Na2O+K2O=8.23%~8.46%)、高铁镁比(FeOT/MgO=17.40~42.59)、贫钙(CaO=0.54%~0.69%)、贫镁(MgO=0.03%~0.09%);稀土配分曲线呈现“海鸥式”分布特征,显示强烈的Eu负异常(δEu=0.09~0.12);微量元素特征显示具有较高的Ga(24.3×10?6~26.9×10?6)、Zr(132×10?6~363×10?6)和Y(86.1×10?6~97.0×10?6)含量,较低的Sr(8.6×10?6~19.5×10?6)、Ba(14.0×10?6~37.9×10?6)含量,在微量元素原始地幔标准化蛛网图上显示明显的Sr、Ba、P、Eu和Ti的负异常。以上特征表明夏日哈木矿区正长花岗岩为铝质A型花岗岩。岩石具有高的Rb/Sr(介于14.97~38.26,平均值22.63)和Rb/Nb(介于13.84~16.13,平均值14.54),显示出壳源岩浆的成分特征。综合分析表明本区正长花岗岩为低压下长英质地壳部分熔融的产物。结合区域构造演化及构造判别,本文认为该区正长花岗岩形成于造山后伸展的构造环境。在晚志留世-早泥盆世,东昆仑地区构造体制经历了重要的转变,由挤压体制转变为造山后软流圈上涌、岩石圈减薄及地壳伸展。在伸展体制下,软流圈地幔上涌导致上覆长英质地壳直接部分熔融,形成本区A型正长花岗岩。

References

[1]  李世金, 孙丰月, 丰成友, 刘振宏, 赵俊伟, 李玉春, 王松. 2008. 青海东昆仑鸭子沟多金属矿的成矿年代学研究. 地质学报, 82(7): 949?955.
[2]  李世金, 孙丰月, 高永旺, 赵俊伟, 李连松, 杨启安. 2012. 小岩体成大矿理论指导与实践――青海东昆仑夏日哈木铜镍矿找矿突破 的启示及意义. 西北地质, 45(4): 185?191.
[3]  刘彬, 马昌前, 张金阳, 熊富浩, 黄坚, 蒋红安. 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785?1807.
[4]  刘成东, 莫宣学, 罗照华, 喻学惠, 谌宏伟, 李述为, 赵欣. 2004. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据. 科学 通报, 49(6): 596?602.
[5]  刘云华, 莫宣学, 喻学惠, 张雪亭, 许国武. 2006. 东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 22(10): 2457?2463.
[6]  龙晓平, 金巍, 葛文春, 余能. 2006. 东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义. 地球化学, 35(4): 333?345.
[7]  陆松年. 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社: 1?125.
[8]  罗照华, 邓晋福, 曹永清, 郭正府, 莫宣学. 1999. 青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化. 现代地质, 13 (1): 51?56.
[9]  罗照华, 柯珊, 曹永清, 邓晋福, 谌宏伟. 2002. 东昆仑印支晚期幔源岩浆活动. 地质通报, 21(6): 292?297.
[10]  莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403?414.
[11]  任军虎, 柳益群, 冯乔, 韩文忠, 高辉, 周鼎武. 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135?1145.
[12]  王强, 赵振华, 熊小林. 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志, 19(4): 297?306.
[13]  许荣华, Harris N B W, Lewis C L, Hawkesworth C J, 张玉泉. 1990. 拉萨至格尔木的同位素地球化学 // 青藏高原地质演化. 北京: 科学出版社: 282?302.
[14]  杨经绥, 王希斌, 史仁灯, 许志琴, 吴才来. 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地 质, 31(3): 225?239.
[15]  袁万明, 莫宣学, 喻学惠, 罗照华. 2000. 东昆仑印支期区域构造背景的花岗岩记录. 地质论评, 46(2): 203?211.
[16]  张建新, 孟繁聪, 万渝生, 杨经绥, 董国安. 2003. 柴达木盆地南缘金水口群的早古生代构造热事件: 锆石U-Pb SHRIMP年龄证据. 地质通报, 22(6): 397?404.
[17]  张智勇, 殷鸿福, 王秉璋, 王瑾, 张克信. 2004. 昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据. 地球科学――中国地质大 学学报, 29(6): 691?696.
[18]  赵振明, 马华东, 王秉璋, 拜永山, 李荣社, 计文化. 2008. 东昆仑早泥盆世碰撞造山的侵入岩证据. 地质论评, 54(1): 47?56.
[19]  周春景, 胡道功, Barosh P J, 吴珍汉, 张永清, 耿建珍, 郝爽, 倪晋宇, 张耀玲. 2010. 东昆仑三道湾流纹英安斑岩锆石U-Pb年龄及地 质意义. 地质力学学报, 16(1): 28?35.
[20]  Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1?2): 59?79.
[21]  Belousova E A, Griffin W L, O’Reilly S Y and Fisher N I. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602?622. B
[22]  Mushkin A, Navon O, Halicz L, Hartmann G and Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif, southern Israel. Journal of Petrology, 44: 815?832.
[23]  Nedelec A, Stephens W E and Fallick A E. 1995. The Panafrican stratoid granites of Madagascar: Alkaline magmatism in a post-collisional extensional setting. Journal of Petrology, 36: 1367?1391.
[24]  Pati?o Douce A E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc- alkaline granitoids. Geology, 25: 743?746.
[25]  Pearce J A. 1996. Sources and settings of granitic rock. Episodes, 19(4): 120?125.
[26]  谌宏伟, 罗照华, 莫宣学, 张雪亭, 王瑾, 王秉璋. 2006. 东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义. 岩石矿物学杂 志, 25(1): 25?32.
[27]  丰成友, 王松, 李国臣, 马圣钞, 李东生. 2012. 青海祁曼塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义. 岩石学报, 28(2): 665?678.
[28]  郭通珍, 刘荣, 陈发彬, 白旭东, 李红刚. 2011. 青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICP-MS锆石U-Pb定年及地 质意义. 地质通报, 30(8): 1203?1211.
[29]  郭正府, 邓晋福, 许志琴, 莫宣学, 罗照华. 1998. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程. 现代地质, 12(3): 344?352.
[30]  侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481?492.
[31]  黄汲清, 任纪舜, 姜春发, 张之孟, 许志琴. 1977. 中国大地构造基本轮廓. 地质学报, 51(2): 117?135.
[32]  贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465?480.
[33]  姜春发, 杨经绥, 冯秉贵, 朱志直, 赵民, 柴耀楚. 1992. 昆仑开合构造. 北京: 地质出版社: 183?217.
[34]  李碧乐, 孙丰月, 于晓飞, 钱烨, 王冠, 杨延乾. 2012. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究. 岩石学报, 28(4): 1163?1172.
[35]  Auwera J V, Bogaerts M, Liégeois J P, Demaiffe D, Wilmart E, Bolle O and Duchesne J C. 2003. Derivation of the 1.0~0.9 Ga ferro- potassic A-type granitoids of southern Norway by extreme differentiation from basic magmas. Precambrian Research, 124: 107?148.
[36]  Batchelor R A and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multi-cationic parameters. Chemical Geology, 48(1?4): 43?55.
[37]  onin B. 1990. From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis. Geological Journal, 25: 261? 270.
[38]  Boynton W V. 1984. Geochemistry of the Rare Earth Elements: Meteorite studies // Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier Science Publishers: 63?114.
[39]  Clemens J D, Holloway J R and White A J R. 1986. Origin of an A-type granite: Experimental constrains. American Mineralogist, 71: 317?324.
[40]  Collins W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80: 189?200.
[41]  Creaser R A, Price R C and Wormald R J. 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19: 163? 166.
[42]  Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20: 641?644.
[43]  Harris C, Marsh J S and Milner S C. 1999. Petrology of the alkaline core of the messum igneous complex, Namibia: Evidence for the progressively decreasing effect of crustal contamination. Journal of Petrology, 40: 1377?1397.
[44]  Hoskin P W O and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27?62.
[45]  King P L, White A J R, Chappell B W and Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38(3): 371?391.
[46]  Liégeois J P. 1998. Some words on the post-collisional magmatism. Lithos, 45: 15?18.
[47]  Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1?2): 537?571.
[48]  Liu Y S, Hu Z C, Gao S, Detlef Günther, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1?2): 34?43.
[49]  Ludwig K R. 2003. User’s Manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1?70.
[50]  Middlemost E A K. 1994. Naming materials in the magma / igneous rock system. Earth Science Reviews, 37(3?4): 215?224.
[51]  Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8~32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36: 891?931.
[52]  Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of minor elements. Lithos, 22: 247?263.
[53]  Skjerlie K P and Johnston A D. 1992. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites. Geology, 20: 263?266.
[54]  Streckeisen A L. 1976. Classification of the common igneous rocks by means of their chemical composition: A provisional attempt. Neues Jahrbuch für Mineralogie, Monatshefte, 1: 1?15.
[55]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes // Saunders A D and Norry M J. Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42: 313? 345.
[56]  Sylvester P J. 1989. Post-collisional alkaline granites. The Journal of Geology, 97: 261?280.
[57]  Taylor S R and McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. London: Blackwell: 57?72.
[58]  Turner S P, Foden J D and Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, 28: 151?179.
[59]  Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407?419.
[60]  Whalen J B, Jenner G A, Longstaffe F J, Robert F and Gariepy C. 1996. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A- type granite: Petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology, 37: 1463?1489.
[61]  Yang J H, Wu F Y, Chung S L, Wilde S A and Chu M F. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89: 89?106.
[62]  Yang J S, Robinson P T, Jiang C F and Xu Z Q. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics, 258: 215?231

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133