全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

陕西省煎茶岭金矿C、H、O、S、Pb同位素地球化学示踪

, PP. 653-670

Keywords: 同位素地球化学,成矿流体,成矿物质来源,煎茶岭金矿,勉-略-阳

Full-Text   Cite this paper   Add to My Lib

Abstract:

陕西省煎茶岭金矿床位于勉-略-阳三角区东北部,勉略缝合带南侧。矿体受F1-45断裂及次级断裂控制。根据矿物共生组合及脉体穿切关系,可将成矿期划分为三个阶段:(Ⅰ)石英-黄铁矿-白云石细脉,含少量硫化物,变形强烈,形成于变形早期或同构造变形期;(Ⅱ)石英-多金属硫化物-碳酸盐细脉,发育大量铬云母;(Ⅲ)白云石-方解石-石英-雄黄-雌黄细脉,形成于张性环境。H、O同位素数据显示,早阶段成矿流体的δD值平均为?76.5‰,δ18OW值变化于7.5‰~21.1‰,类似于变质水,晚阶段δD值为?81‰,δ18OW变化于2.5‰~7.7‰,接近大气降水线,指示初始成矿流体为变质流体,晚阶段向大气降水演化。C同位素研究显示,早阶段成矿流体?13CCO2为?2.4‰~2.6‰,中阶段成矿流体?13CCO2为?1.9‰~0.4‰,晚阶段为?5.0‰~1.6‰,指示早阶段成矿流体来源于碳酸盐岩地层的变质分解,晚阶段有大气降水的混入。矿石S同位素显示较高的正值,集中于10‰~15‰,与断头崖组地层一致,指示成矿物质与断头崖组地层有关。相比于赋矿围岩,矿石Pb同位素具有更低的放射性成因铅,指示成矿物质需要有另一更低放射性成因铅的物质端元,即地幔物质的加入。总之,初始成矿流体以变质流体为主,成矿流体及成矿物质可能主要来源于围岩,另有少量深部(地幔)物质加入。

References

[1]  陈好寿. 1985. 南岭地区泥盆系层控矿床的铅同位素地球化学研究. 大地构造与成矿学, 9(3): 231?244.
[2]  陈衍景. 2006. 造山型矿床、成矿模式及找矿潜力. 中国地质, 33(6): 1181?1195.
[3]  陈衍景. 2010. 秦岭印支期构造背景、岩浆活动及成矿作用. 中国地质, 37(4): 854?865.
[4]  陈衍景, 富士谷. 1992. 豫西金矿成矿规律. 北京: 地震出版社: 1?234.
[5]  陈衍景, 李诺. 2009. 大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异. 岩石学报, 25(10): 2477?2508.
[6]  陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿床的流体包裹体特征. 岩石学报, 23(9): 2085?2108.
[7]  陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题.岩石学报, 25(11): 2695?2726.
[8]  胡受奚, 林潜龙, 陈泽铭, 黎世美. 1988. 华北与华南古板块拼合带地质和成矿. 南京: 南京大学出版社: 1?558.
[9]  黄建军, 黄斌, 任小华, 徐文?, 廖俊红. 2002. 铅同位素在煎茶岭金矿快速追踪定位打靶中的应用. 黄金科学技术, 10(1): 33?40.
[10]  黄婉康, 冉红彦. 1996. 蛇绿岩带碳酸盐化超基性岩金矿床的成矿特征. 矿物岩石地球化学通报, 15(3): 153?156.
[11]  姜修道, 魏刚峰, 聂江涛. 2010. 煎茶岭镍矿――是岩浆还是热液成因. 矿床地质, 29(6): 1112?1124.
[12]  蒋少涌, 戴宝章, 姜耀辉, 赵海香, 侯明兰. 2009. 胶东和小秦岭: 两类不同构造环境中的造山型金矿省. 岩石学报, 25(11): 2727?2738.
[13]  蒋少涌, 杨涛, 李亮等. 2006. 大西洋洋中脊TAG热液区硫化物铅和硫同位素研究. 岩石学报, 22(10): 2597?2602.
[14]  李文博, 黄智龙, 张冠. 2006. 云南会泽铅锌矿田成矿物质来源: Pb, S, C, H, O, Sr 同位素制约. 岩石学报, 22(10): 2567?2580.
[15]  李永飞, 赖绍聪, 秦江锋, 刘鑫, 王娟. 2007. 碧口火山岩系地球化学特征及Sr-Nd-Pb同位素组成――晋宁期扬子北缘裂解的证据. 中国科学(D辑), 37(增刊I): 295?306.
[16]  廖俊红. 1999. 陕西略阳煎茶岭金矿床成矿规律及成矿模式. 有色金属矿产与勘查, 8(1): 21?28.
[17]  刘永丰, 李才一. 1991. 陕西略阳东沟坝黄铁矿型金银多金属矿床成矿物理化学条件研究. 矿物岩石, 11(2): 155?164.
[18]  卢武长, 杨绍全. 1997. 东沟坝多金属矿床硫同位素交换动力学. 矿物岩石, 17(1): 105?110.
[19]  马建秦. 1998. 秦岭勉略宁地区金矿床形成模式与找矿方向. 贵阳: 中国科学院地球化学研究所博士学位论文: 1?90.
[20]  毛世东. 2011. 甘肃阳山超大型金矿地质地球化学. 广州: 中国科学院广州地球化学研究所博士学位论文: 1?243.
[21]  聂江涛. 2010. 陕西省煎茶岭金镍矿田特征及其控岩控矿作用. 西安: 长安大学博士学位论文: 1?156.
[22]  聂江涛, 魏刚锋, 姜修道, 李赛赛, 任金彬, 任华. 2010. 煎茶岭韧性剪切带的厘定及其地质意义. 大地构造与成矿学, 34(1): 1?19.
[23]  秦克令, 何世平, 宋述光. 1992. 碧口地体同位素地质年代学及其意义. 西北地质科学, 13(2): 97?110.
[24]  任小华. 2008. 陕西勉略宁地区金属矿床成矿作用与找矿靶区预测研究. 西安: 长安大学博士学位论文: 1?150.
[25]  汪东波, 李树新. 1991. 略阳东沟坝金、银、铅、锌、黄铁矿-重晶石型矿床的成因――成矿物理化学条件及稳定同位素地球化学研究. 西北地质, 12(3): 25?32.
[26]  汪在聪, 刘建明, 刘红涛, 曾庆栋, 张松, 王永彬. 2010. 稳定同位素热液来源示踪的复杂性和多解性评述――以造山型金矿为例. 岩石矿物学杂志, 29(5): 577?590.
[27]  王瑞廷, 赫英, 王东生, 刘民武. 2003. 略阳煎茶岭铜镍硫化物矿床Re-Os同位素年龄及其地质意义. 地质论评, 49(2): 205?211.
[28]  王瑞廷, 赫英, 王新. 2000. 煎茶岭大型金矿床成矿机理探讨. 西北地质科学, 21(1): 19?26.
[29]  王瑞廷, 毛景文, 赫英, 汤中立, 王东生, 任小华. 2005. 煎茶岭硫化镍矿床的铂族元素地球化学特征及其意义. 岩石学报, 21(1): 219?226.
[30]  王瑞廷, 王东生, 李福让, 陈荔湘, 代军治, 王义天, 闫臻. 2009. 煎茶岭大型金矿床地球化学特征――成矿地球动力学及找矿标志. 地质学报, 83(11): 1739?1751.
[31]  王伟, 刘树文, 吴峰辉, 李秋根, 王宗起, 杨凯, 闫全人, 王瑞廷, 杨鹏涛. 2011. 陕南铜厂闪长岩体的成岩、成矿时代及其地质意义. 北京大学学报(自然科学版), 47(1): 91?102.
[32]  王相. 1996. 秦岭造山与金属成矿. 北京: 冶金工业出版社: 1?301.
[33]  薛静, 戴塔根, 付松武, 马国秋, 黄伟盟. 2011. 广西武宣盘龙铅锌矿喷流沉积成矿作用: 稀土元素和硫同位素证据. 大地构造与成矿学, 35(3): 394?403.
[34]  闫全人, 王宗起, 闫臻, 刘敦一, 宋彪, 简平, 王涛. 2003. 碧口群火山岩的时代――SHRIMP锆石U-Pb 测年结果. 地质通报, 22(6): 456?458.
[35]  杨荣生, 陈衍景, 张复新, 李志宏, 毛世东, 刘红杰, 赵成海. 2006. 甘肃阳山金矿独居石 Th-U-Pb 化学年龄及其地质和成矿意义. 岩石学报, 22(10): 2603?2610.
[36]  原莲肖, 张梦平, 侯俊富, 秦婷婷. 2004. 陕西略阳县苗儿沟金矿物质组分和成矿流体特征研究. 陕西地质, 22(2): 25?35.
[37]  张复新, 汪军谊. 1999. 陕西煎茶岭超基性岩与金矿床成因关系. 黄金地质, 5(2): 14?20.
[38]  张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社: 1?855.
[39]  张宏飞, 靳兰兰, 张利, Harris N, 周炼, 胡圣虹, 张本仁. 2005. 西秦岭花岗岩类地球化学和 Pb-Sr-Nd 同位素组成对基底性质及其构造属性的限制. 中国科学(D辑), 35(10): 914?926.
[40]  张莉, 杨荣生, 毛世东, 鲁颖淮, 秦艳, 刘红杰. 2009. 阳山金矿床锶铅同位素组成特征与成矿物质来源. 岩石学报, 25(11): 2811?2822.
[41]  张欣, 徐学义, 宋公社, 王洪亮, 陈隽璐, 李婷. 2010. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石LA-ICP-MS U-Pb测年及地质意义. 地质通报, 29(4): 510?517.
[42]  赵瑞. 1986. 冀鲁皖若干内生矿床的硫同位素研究. 岩石学报, 2(1): 26?31.
[43]  郑崔勇, 刘建党, 袁波, 陈世杰, 董广法, 张晓莉, 宋小慧. 2007. 与煎茶岭金矿有关超基性岩体地球化学特征. 地质与勘探, 43(6): 52?57.
[44]  郑永飞, 陈江峰. 2000. 稳定同位素地球化学. 北京: 科学出版社: 1?316.
[45]  周家喜, 黄智龙, 周国富, 曾乔松. 2012. 黔西北天桥铅锌矿床热液方解石 C、O同位素和 REE 地球化学. 大地构造与成矿学, 36(1): 93-101.
[46]  周乐尧. 1991. 甘肃省西成铅锌矿田矿源层的确定及其Pb-Zn活化机理研究. 地球科学――中国地质大学学报, 16(2): 199?206.
[47]  周振菊. 2012. 南秦岭铧厂沟和小秦岭文峪金矿对比研究. 广州: 中国科学院广州地球化学研究所博士学位论文: 1?174.
[48]  朱润亚. 2008. 煎茶岭金矿床北矿床地质特征和矿床成因分析. 硅谷(自然科学), 12: 5?7.
[49]  Barker S L, Bennett V C, Cox S F, Norman M D and Gagan M K. 2009. Sm-Nd, Sr, C and O isotope systematics in hydrothermal calcite-fluorite veins: Implications for fluid?rock reaction and geochronology. Chemical Geology, 268: 58?66.
[50]  Bierlein F P, Arne D C and Cartwright I. 2004. Stable isotope (C, O, S) systematics in alteration haloes associatedwith orogenic gold mineralization in the Victorian gold province, SE Australia. Geochemistry: Exploration, Environment, Analysis, 4(3): 191?211.
[51]  Cartigny P, Harris J W and Javoy M. 1998. Eclogitic diamond formation at Jwaneng: No room for a recycled component. Science, 280: 1421?1424.
[52]  Chacko T, Mayeda T K, Clayton R N. and Goldsmith J R. 1991. Oxygen and carbon isotope fractionations between CO2 and calcite. Geochimica et Cosmochimica Acta, 55: 2867?2882.
[53]  Franklin J M, Gibson H L, Jonasson I and Galley A G. 2005. Volcanogenic massive sulfide deposit. Economic Geology, 100th Anniversary Volume: 533?560.
[54]  Gavrielli I, Starinsky A, Spiro B, Aizenshtat A and Nielsen H. 1995. Mechanisms of sulphate removal from subsurface calcium chloride brines, Heletz-Kokhav oilfields, Israel. Geochimica et Cosmochimica Acta, 59: 3525?3533.
[55]  Goldfarb R J, Baker T, Dube B, Groves D I, Hart C J R and Gosselin P. 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology, 100th Anniversary Volume: 407?450.
[56]  Groves D I and Bierlein F P. 2007. Geodynamic settings of mineral deposit systems. Journal of the Geological Society, 164(1): 19?30.
[57]  Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G and Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1): 7?27.
[58]  Hagemann S G and Cassidy K F. 2000. Archean orogenic lode gold deposits. Reviews in Economic Geology, 13: 9?68.
[59]  Hoefs J. 1997. Stable Isotope Geochemistry (4th Edition). Berlin: Springer-Verlag: 1?201.
[60]  Jiang S Y, Han F, Shen J Z and Palmer M R. 1999. Chemical and Sr-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi province, China. Chemical Geology, 157: 49?67.
[61]  Jiang Y H, Jin G D, Liao S Y, Zhou Q and Zhao P. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision. Lithos, 117: 183?197.
[62]  Kempe U, Belyatsky B V, Krymsky R S, Kremenetsky A A and Ivanov P A. 2001. Sm-Nd and Sr isotope systematics of scheelite from the giant Au (-W) deposit Muruntau (Uzbekistan): Implications for the age and sources of Au mineralization. Mineralium Deposita, 36: 379?392.
[63]  Kerrich R, Goldfarb R J, Groves D, Garwin S and Jia Y F. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China (Series D), 43(Supplement): 1?68.
[64]  Kerrich R, Goldfarb R J and Richards J P. 2005. Metallogenic provinces in an evolving geodynamic framework. Economic geology, 100th anniversary Volume: 1097?1136.
[65]  Leach D, Sangster D, Kelley K, Large R R, Garven G, Sllen C R, Gutzmer J and Walters S G. 2005. Sediment-hosted lead-zinc deposits: A global perspective. Economic Geology, 100th Anniversary Volume: 561?607.
[66]  Li N, Chen Y J, Fletcher I R and Zeng Q T. 2011. Triassic mineralization with Cretaceous overprint in the Dahu Au-Mo deposit,
[67]  Xiaoqinling gold province: Constraints from SHRIMP monazite U-Th-Pb geochronology. Gondwana Research, 20(2): 543?552.
[68]  Mao J W, Pirajno F, Xiang J F, Gao J J, Ye H S, Li Y F and Guo B J. 2011. Mesozoic molybdenumdeposits in the east Qinling-Dabie orogenic belt: Characteristics and tectonic settings. Ore Geology Reviews, 43: 264?293.
[69]  Mao J W, Xie G Q, Bierlein F, Qu W J, Du A D, Ye H S, Pirajno F, Li H M, Guo B J, Li Y F and Yang Z Q. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta, 72: 4607?4626.
[70]  Ni Z Y, Chen Y J, Li N and Zhang H. 2012. Pb-Sr-Nd isotope constraints on the fluid source of the Dahu Au-Mo deposit in Qinling Orogen, central China, and implication for Triassic tectonic setting. Ore Geology Reviews, 46: 60?67.
[71]  Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy, 6: 491?599.
[72]  Ohmoto H and Rye R O. 1979. Isotopes of Sulfur and Carbon // Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley Interscience: 509?567.
[73]  Pirajno F. 2009. Hydrothermal Processes and Mineral System. Berlin: Springer: 1?1250.
[74]  Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515?1533.
[75]  Rye R O and Ohomoto H. 1974. Sulfur and carbon isotope and ore genesis: A review. Economic Geology, 69: 826?842.
[76]  Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67(2): 184?197.
[77]  Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problem of hydrothermal alteration and ore deposition. Economic Geology, 69(6): 843?883.
[78]  Voicu G, Bardoux M, Stevenson R and Jebrak M. 2000. Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: Implications for ore fluid source and flow path during the formation of orogenic gold deposits. Mineralium Deposita, 35(4): 302?314.
[79]  Wan B, Xiao W J, Zhang L and Han C M. 2012. Iron mineralization associated with a major strike-slip shear zone: Radiometric and oxygen isotope evidence from the Mengku deposit, NW China. Ore Geology Reviews, 44: 136?147.
[80]  Xu C, Kynicky J, Chakhmouradian A R, Qi L and Song W L. 2010. A unique Mo deposit associated with carbonatites in the Qinling orogenic belt, central China. Lithos, 118: 50?60.
[81]  Yang J H and Zhou X H. 2001. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology, 29: 711?714.
[82]  Yang Y F, Chen Y J, Li N, Mi M, Xu Y L, Li F L and Wan S Q. 2012. Fluid inclusion and isotope geochemistry of the Qian''echong giant porphyry Mo deposit, Dabie Shan, China: A case of NaCl-poor, CO2-rich fluid systems. Journal of Geochemical Exploration, 124: 1?13.
[83]  Zartman R and Doe B. 1981. Plumbotectonics―the model. Tectonophysics, 75(1): 135?162.
[84]  Zhang J, Chen Y J, Qi J P and Ge J. 2009. Comparison of the typical metallogenic systems in the north slope of the Tongbai-East Qinling Mountains and its geologic implications. Acta Geologica Sinica (English edition), 83: 396?410.
[85]  Zhang Y M, Gu X X, Liu L, Dong S Y, Li K, Li B H and Lv P R. 2011. Fluid inclusion and H-O isotope evidence for immiscibility during mineralization of the Yinan Au-Cu-Fe deposit, Shandong, China. Journal Asian Earth Science, 42(1?2): 83?96.
[86]  Zheng Y F. 1999. Oxygen isotope fractionation in carbonate and sulfate minerals. Geochemical Journal Japan, 33: 109?126.
[87]  陈衍景, 张静, 张复新, 李超. 2004. 西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式. 地质论评, 50(2): 134?152.
[88]  董广法, 王国富, 刘继顺. 1998. 勉略宁地区东沟坝组火山岩的成因浅析. 大地构造与成矿学, 22(2): 163?169.
[89]  杜远生, 盛吉虎, 冯庆来, 顾松竹, 陈家义, 杨永成, 李荣社. 1998. 南秦岭勉略地区“三河口群”的解体及地质意义. 地层学杂志, 22(3): 170?175.
[90]  高航校. 1999. 李家沟金矿床成矿物质来源研究. 有色金属矿产与勘查, 8(2): 86?91.
[91]  胡建明, 董广法. 2002. 略阳县煎茶岭金矿矿体的空间展布规律及找矿方向. 大地构造与成矿学, 26(2): 75?80.
[92]  马建秦, 李朝阳, 张复新. 1999. 秦岭煎茶岭金矿床含金富砷黄铁矿增生环带研究. 矿物学报, 19(2): 139?147.
[93]  庞春勇, 陈民扬. 1993. 煎茶岭地区同位素地质年龄数据及其地质意义. 矿产与地质, 7(5): 354?360.
[94]  庞奖励, 裘愉卓, 刘雁. 1994. 论超基性岩在煎茶岭金矿床成矿过程中的作用. 地质找矿论丛, 9(3): 59?65.
[95]  祁进平, 肖平, 宋要武, 陈福坤. 2009. 河南栾川西沟铅锌银矿床铷-锶同位素研究. 岩石学报, 25(11): 2843?2854.
[96]  王学明, 陈梦熊, 李玫, 李福让. 2002. 陕西煎茶岭金矿金的赋存状态研究. 地质与勘探, 38(6): 34?38.
[97]  吴峰辉, 刘树文, 李秋根, 王宗起, 苏犁, 杨恺, 张帆, 闫全人, 闫臻. 2009. 西秦岭光头山花岗岩锆石U-Pb年代学及其地质意义. 北京大学学报(自然科学版), 45(5): 811?818.
[98]  Chen H Y, Chen Y J and Baker M J. 2012. Isotopic geochemistry of the Sawayaerdun orogenic-type gold deposit, Tianshan, northwest China: Implications for ore genesis and mineral exploration. Chemical Geology, 310?311: 1?11.
[99]  Chen Y J, Li C, Zhang J, Li Z and Wang H H. 2000. Sr and O isotopic chraracteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type. Science in China (Series D), 43(Supplement): 82?94.
[100]  Chen Y J, Pirajno F, Li N, Guo D S and Lai Y. 2009. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: Implications for ore genesis. Ore Geology Reviews, 35: 245?261.
[101]  Chen Y J, Pirajno F and Sui Y H. 2004. Isotope geochemistry of the Tieluping silver deposit, Henan, China: A case study of orogenic silver deposits and related tectonic setting. Mineralium Deposita, 39: 560?575.
[102]  Clayton R N, O’Neil J R and Mayeda T K. 1972. Oxygen isotope exchange between quartz and water. Journal of GeophysicalGeophysics Research, 77(17): 3057?3067
[103]  Coplen T B, Kendall C and Hopple J. 1983. Comparison of stable isotope reference samples. Nature, 302: 236?238.
[104]  Deines P, Harris J W and Gurney J J. 1991. The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffieontein kimberlites, South Africa. Geochimica et Cosmochimica Acta, 55: 2615?2626.
[105]  Dejonghe J, Boulegue J, Demaffc and Letolle R. 1989. Isotope geochemistry (S, C, O, Sr, Pb) of Chaudfontaine mineralization (Belgium). Mineralium Deposita, 24: 132?134.
[106]  Deng X H, Chen Y J, Santosh M and Yao J M. 2013a. Genesis of the 1.76 Ga Zhaiwa Mo-Cu and its link with the Xiong’er volcanics in the North China Craton: Implications for accretionary growth along the margin of the Columbia supercontinent. Precambrian Research, 227: 337?348.
[107]  Deng X H, Chen Y J, Santosh M, Zhao G C and Yao J M. 2013b. Metallogeny during continental outgrowth in the Columbia supercontinent: Isotopic characterization of the Zhaiwa Mo-Cu system in the North China Craton. Ore Geology Reviews, 51: 43?56.
[108]  Ernst W G, Tsujimori T, Zhang R and Liou G. 2007. Permo-Triassic collision, subduction zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annual Review of Earth and Planetary Science, 35: 73?110.
[109]  Faure G. 1986. Principles of Isotope Geology (2nd Edition). New York: John Wiley & Sons: 1?589.
[110]  Sangster A L. 1992. Light stable isotope evidence for a metamorphogenic origin for bedding-parallel, gold-bearing veins in Cambrian flysch, Meguma Group, Nova Scotia. Exploration and Mining Geology, 1(1): 69?79.
[111]  Schidlowski M. 1998. Beginning of terrestrial life: Problems of the early record and implications for extraterrestrial scenarios // SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, 3441: 149?157.
[112]  Schidlowski M, Hayes J M and Kaplan I R. 1983. Isotopic inferences of ancient biochemistries―Carbon, sulfur, hydrogen, and nitrogen // Earth’s earliest biosphere: Its origin and evolution. Princeton, NJ: Princeton University Press: 149?186.
[113]  Sheppard S M F and Schwarcz H P. 1970. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contributions to Mineralogy and Petrology, 26(3): 161?198.
[114]  Zhu L M, Zhang G, Chen Y, Chen Y J, Ding Z J, Guo B, Wang F and Lee B. 2011. Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit. Ore Geology Reviews, 39(1): 46?62.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133