全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

湖南锡田含W-SnA型花岗岩年代学与地球化学特征

, PP. 511-529

Keywords: 锡田,A型花岗岩,地球化学,锆石U-Pb定年

Full-Text   Cite this paper   Add to My Lib

Abstract:

锡田复式花岗岩体位于湘赣交界处,是南岭地区重要的含W-Sn多金属矿花岗岩体之一。本文对锡田垄上赋矿细粒花岗岩进行了LA-ICP-MS年代学及地球化学研究。锆石U-Pb年代学研究表明,锡田花岗岩结晶年龄为151.7±1.2Ma,与前人采用SHRIMP锆石U-Pb定年法所获得的年龄一致,表明其形成于燕山早期。锡田垄上细粒花岗岩具有高Si(SiO2=73.44%~78.45%)、高K(K2O/Na2O=1.00~253.77)、低Ca(CaO=0.25%~2.22%)、贫Mg(MgO=0.05%~0.42%)、富Al(Al2O3=11.20%~13.90%)的特征,为准铝质至强过铝质(A/CNK=0.90~3.44),同时强烈亏损Sr、Ba、P、Ti、Nb、Eu(δEu=0.004~0.076)等元素,富集高场强元素Th、Ta和Hf,以及大离子亲石元素Rb和LREE等。主量元素和微量元素分析表明,锡田垄上细粒花岗岩具有A型花岗岩特征。Sr-Nd同位素研究结果显示,岩石具有相对较高的εNd(t)(?7.30~?8.87)值,其两阶段Nd模式年龄集中在1.56~1.69Ga之间,暗示其可能主要来源于古老地壳物质的部分熔融。综合研究表明,锡田花岗岩的形成可能与古太平洋板块俯冲消减引起的拉张环境有关。同时锡田细粒花岗岩显示出良好的Sn成矿性,是比较典型的含锡花岗岩。

References

[1]  顾连兴. 1990. A型花岗岩的特征、成因及成矿. 地质科技情报, 9(1): 25?31.
[2]  洪大卫, 王式洗, 韩宝福, 靳满元. 1995. 碱性花岗岩的构造环境分类及其鉴别标志. 中国科学(B辑), 25(4): 418?426.
[3]  洪大卫, 谢锡林, 张季生. 2002. 试析杭州-诸广山-花山高εNd值花岗岩带的地质意义. 地质通报, 21 (6): 348?354.
[4]  黄国成, 王登红, 吴小勇. 2012. 浙江临安千亩田钨铍矿区花岗岩锆石LA-ICP-MS U-Pb年龄及对区域找矿的意义. 大地构造与成矿学, 36(3): 392?398.
[5]  黄会清, 李献华, 李武显, 刘颖. 2008. 南岭大东山花岗岩的形成时代与成因――SHRIMP锆石U-Pb年龄、元素和Sr-Nd-Hf同位素. 地球化学, 14(3): 317?333.
[6]  蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496?509.
[7]  李建锋, 张志诚, 韩宝福. 2010. 中祁连西段肃北、石包城地区早古生代花岗岩年代学、地球化学特征及其地质意义. 岩石学报, 26(8): 2431?2444.
[8]  李兆丽, 胡瑞忠, 彭建堂, 毕献武, 李晓敏. 2006. 湖南芙蓉锡矿田流体包裹体的He同位素组成及成矿流体来源示踪. 地球科学――中国地质大学学报, 30(1): 129?135.
[9]  刘国庆, 伍式崇, 杜安道, 付建明, 杨晓君, 汤质华, 魏君奇. 2008. 湘东锡田钨锡矿区成岩成矿时代研究. 大地构造与成矿学, 32(1): 63?71.
[10]  龙宝林, 伍式崇, 徐辉煌. 2009. 湖南锡田钨锡多金属矿床地质特征及找矿方向. 地质与勘探, 45(3): 229? 234.
[11]  罗洪文, 曾钦旺, 曾桂华, 伍式崇, 余阳春. 2005. 湘东锡田锡矿田矿床地质特征及矿床成因. 华南地质与矿产, (2): 61?67.
[12]  马丽艳, 付建明, 伍式崇, 徐德明, 杨晓君. 2008. 湘东锡田垄上锡多金属矿床40Ar/39Ar同位素定年研究. 中国地质, 35(4) : 706?713.
[13]  马铁球, 柏道远, 邝军, 王先辉. 2005. 湘东南茶陵地区锡田岩体锆石SHRIMP定年及其地质意义. 地质通报, 24(5): 415?419.
[14]  马铁球, 王先辉, 柏道远. 2004. 锡田含W、Sn花岗岩体的地球化学特征及其形成构造背景. 华南地质与矿产, (1): 11?16.
[15]  毛景文, 李红艳, 宋学信, 王登红, 张景凯. 1998. 湖南柿竹园钨锡钼铋多金属矿床地质与地球化学. 北京: 地质出版社: 1?182.
[16]  苏玉平, 唐红峰. 2005. A 型花岗岩的微量元素地球化学. 矿物岩石地球化学通报, 24(3): 245?251.
[17]  孙涛, 周新民, 陈培荣, 李惠民, 周红英, 王志成, 沈渭洲. 2003. 南岭东段中生代强过铝花岗岩成因及其大地构造意义. 中国科学(D辑), 33(12): 1209?1218.
[18]  王登红, 陈郑辉, 黄国成, 武国忠, 陈芳. 2012. 华南“南钨北扩”、“东钨西扩”及其找矿方向探讨. 大地构造与成矿学, 36(3): 322?329.
[19]  Carter A, Roques D, Bristow C and Kinny P. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29(3): 211?214.
[20]  Chappell B W and White A J R. 1991. Restite enclaves and the restite model // Didier J and Barbarin B. Enclaves and Granite Petrology. Amsterdam: Elsevier: 375?381.
[21]  Haapala I and Lukkari S. 2005. Petrological and geochemical evolution of the Kymi stock, a topaz granite cupola within the Wiborg rapakivi batholith, Finland. Lithos, 80(1?4): 347?362.
[22]  Heinrich C A. 1990. The Chemistry of hydrothermal tin (-tungsten) ore deposition. Economic Geology, 85(3): 457?481.
[23]  Jiang Y H, Jiang S Y, Zhao K D and Ling H F. 2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China: Implications for a back-arc extension setting. Geological Magazine, 143(4): 457?474.
[24]  King P L, White A J R, Chappell B W and Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38(3): 371?391.
[25]  Lehmann B. 1990. Metallogeny of Tin. Berlin: Springer- Verlag: 1?211.
[26]  Li X H. 1997. Timing of the Cathaysia block formation: Constraints from SHRIMP U-Pb zircon geochronology. Episodes, 20(3): 188?192.
[27]  Li X H, Chung S L, Zhou H W, Lo C H, Liu Y and Chen C W. 2004a. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. Aspects of the Tectonic Evolution of China, 226: 193?215.
[28]  Li X H, Liu D Y, Sun M, Li W X, Liang X R and Liu Y. 2004b. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geological Magazine, 141(2): 225 ?231.
[29]  Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J and Qi C S. 2007a. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96(1?2): 186?204.
[30]  Li X H, Li W X and Li Z X. 2007b. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873?1885.
[31]  毕承思, 沈湘元, 徐庆生, 明奎海, 孙惠礼, 张春生. 1993. 新疆贝勒库都克锡矿带含锡花岗岩地质特征. 岩石矿物学杂志, 12(3): 213?223.
[32]  蔡明海, 赵广春, 张诗启, 陈艳, 徐明, 彭振安. 2012. 富贺钟钨锡多金属矿集区成矿规律及成矿模式. 大地构造与成矿学, 36(1): 85?92.
[33]  蔡新华, 贾宝华. 2006. 湖南锡田锡矿的发现及找矿潜力分析. 中国地质, 33(5): 1100?1108.
[34]  蔡杨, 马东升, 陆建军, 黄卉. 2011. 湖南邓阜仙岩体和锡田岩体的地球化学及成矿差异性对比. 矿物学报, 增刊, 4?6.
[35]  陈江峰, 郭新生, 汤加富, 周泰禧. 1999. 中国东南地壳增长与Nd同位素模式年龄. 南京大学学报(自然科学), 35(6): 649?658.
[36]  陈骏, 王汝成, 周建平, 季峻峰. 2000. 锡的地球化学. 南京: 南京大学出版社: 1?320.
[37]  陈毓川, 王登红. 2012. 华南地区中生代岩浆成矿作用的四大问题. 大地构造与成矿学, 36(3): 315?321.
[38]  丰成友, 曾载淋, 王松, 梁景时, 丁明. 2012. 赣南矽卡岩型钨矿成岩成矿年代学及地质意义――以焦里和宝山矿床为例. 大地构造与成矿学, 36(3): 337?349.
[39]  胡建, 邱检生, 王德滋, 王汝成, 张晓琳. 2005. 中国东南沿海与南岭内陆A型花岗岩的对比及其构造意义. 高校地质学报, 11(3): 404?414.
[40]  付建明, 程顺波, 卢友月, 伍式崇, 马丽艳, 陈希清. 2012. 湖南锡田云英岩-石英脉型钨锡矿的形成时代及其赋矿花岗岩锆石SHRIMP U-Pb定年. 地质与勘探, 48(2): 313?320.
[41]  付建明, 马昌前, 谢才富, 张业明, 彭松柏. 2004a. 湖南骑田岭岩体东缘菜岭岩体的锆石SHRIMP定年及其意义. 中国地质, 31(1): 96?100.
[42]  付建明, 马昌前, 谢才富. 2004b. 湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义. 大地构造与成矿学, 28(4): 370?378.
[43]  付建明, 马昌前, 谢才富, 张业明, 彭松柏. 2005. 湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析. 地球化学, 34(3): 215?226.
[44]  付建明, 伍式崇, 徐德明, 马丽艳, 程顺波, 陈希清. 2009. 湘东锡田钨锡多金属矿区成岩成矿时代的再厘定. 华南地质与矿产, (3): 1?7.
[45]  付建明, 徐德明, 杨晓君, 马丽艳, 蔡明海, 刘云华, 魏君奇, 刘国庆, 魏道芳, 陈希清, 程顺波, 梅玉萍. 2011. 南岭锡矿. 武汉: 中国地质大学出版社: 1?252.
[46]  李晓敏, 胡瑞忠, 毕献武, 彭建堂. 2010. 湘南骑田岭花岗岩岩体地球化学特征及锡成矿潜力. 吉林大学学报(地球科学版), 40(1): 80?92.
[47]  王强, 赵振华, 熊小林. 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志, 19(4): 297?306.
[48]  王岳军, 范蔚茗, 梁新权, 彭头平, 石玉若. 2005. 湖南印支期花岗岩SHRIMP锆石U-Pb及其成因启示.科学通报, 50(2): 1259?1266.
[49]  汪雄武, 王晓地. 2002. 花岗岩成矿的几个判别标志. 岩石矿物学杂志, 21(2): 119?130.
[50]  伍式崇, 洪庆辉, 龙伟平, 罗郧. 2009. 湖南锡田钨锡多金属矿床成矿地质特征及成矿模式. 华南地质与矿产, (2): 1?6.
[51]  ]伍式崇, 龙自强, 徐辉煌, 周云, 蒋英, 潘传楚. 2012. 湖南锡田锡钨多金属矿床成矿构造特征及其找矿意义. 大地构造与成矿学, 36(2): 217?226.
[52]  伍式崇, 罗洪文, 黄韬. 2004. 锡田中部地区锡多金属矿成矿地质特征及找矿潜力. 华南地质与矿产, (2): 21?26.
[53]  许保良, 阎国翰, 张 臣. 1998. A型花岗岩的岩石学亚类及其物质来源. 地学前缘, 5( 3) : 113?124.
[54]  杨晓君, 伍式崇, 付建明, 黄惠兰, 常海亮, 刘云华, 魏君奇, 刘国庆, 马丽艳. 2007. 湘东锡田垄上锡多金属矿床流体包裹体研究. 矿床地质, 26(5): 501?511.
[55]  赵葵东, 蒋少涌, 姜耀辉, 刘敦一. 2006. 湘南骑田岭岩体芙蓉超单元的锆石SHRIMP U-Pb年龄及其地质意义. 岩石学报, 22(8): 2611?2616.
[56]  赵葵东, 蒋少涌, 朱金初, 李亮, 戴宝章, 姜耀辉, 凌洪飞. 2009. 桂东北花山-姑婆山侵入杂岩体和暗色包体的锆石微区Hf同位素组成及其成岩指示意义. 科学通报, 54(23): 3716?3725.
[57]  赵振华, 包志伟, 张伯友, 熊小林. 2000. 柿竹园超大型钨多金属矿床形成的壳慢相互作用背景. 中国科学(D辑), 30: 161?168.
[58]  朱金初, 张辉, 谢才富, 张佩华, 杨策. 2005a. 湘南骑田岭竹枧水花岗岩的锆石SHRIMP U-Pb年代学和岩石学. 高校地质学报, 11(3): 335?342.
[59]  朱金初, 谢才富, 张佩华, 杨策, 顾晟彦. 2005b. 桂东北牛庙闪长岩和同安石英二长岩: 岩石学、锆石SHRIMP U-Pb年代学和地球化学. 岩石学报, 21(3): 665?676.
[60]  朱金初, 张佩华, 谢才富, 张辉, 杨策. 2006a. 南岭西段花山-姑婆山A型花岗质杂岩带: 岩石学、地球化学和岩石成因. 地质学报, 80(4): 529?542.
[61]  朱金初, 张佩华, 谢才富, 张辉, 杨策. 2006b. 南岭西段花山-姑婆山侵入岩带锆石U-Pb年龄格架及其地质意义. 岩石学报, 22(9): 2270?2278.
[62]  朱金初, 张佩华, 谢才富, 张辉, 杨策. 2006c. 桂东北里松花岗岩中暗色包体的岩浆混合成因. 地球化学, 35(5): 506?516.
[63]  Ames L, Zhou G Z and Xiong B C. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15(2): 472? 489.
[64]  Barnes, S J, Naldrett, A J and Gorton, M P. 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology, 53(3-4): 303?323.
[65]  Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J and Foudoulis C. 2003a. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochrono-logy. Chemical Geology, 200(1?2): 155?170.
[66]  Blevin P L and Chappell B W. 1995. Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia: The metallogeny of I- and S-type granites. Economic Geology, 90(6): 1604?1619.
[67]  Chen J F and Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284: 101?133.
[68]  Claesson S, Vertin V, Bayanova T and Downes H. 2000. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaen to the Palaeozoic. Lithos, 51(1-2): 95?108.
[69]  Compston W, Williams I S, Kirschvink J L and Zhang Z C. 1992. Ziron U-Pb ages for the Early Cambrian time- scale. Journal of the Geological Society, 149: 171?184.
[70]  Dahlquist J A. 2002. Mafic microgranular enclaves: Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15(6): 643?655.
[71]  Dickin A P. 1994. Nd isotope chemistry of Tertiary igneous rocks from Arran, Scotland: Implications for magma evolution and crustal structure. Geological Magazine, 131(3): 329?333.
[72]  Dostal J and Chatterjee A K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 163(1?4): 207?218.
[73]  Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641?644.
[74]  Fromagat J. 1932. Sur la structure des Indosinides. Comptes Rendus de 1’Académie des Sciences, 195: 538.
[75]  Gilder S A, Gill J, Coe R S, Zhao X X, Liu Z W, Wang G X, Yuan K R, Liu W L, Kuang G D and Wu H R. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. Journal of Geophysical Research. Part B: Solid Earth, 101(B7): 16137?16154.
[76]  Green T H. 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3?4): 347?359.
[77]  Jahn B M, Wu F Y, Capdevila R, Martineau F, Zhao Z H and Wang Y X. 2001. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an Mountain in NE China. Lithos, 59(4): 171?198.
[78]  Janou?ek V, Finger F, Roberts M, Fr?da J, Pin C and Dolej? D. 2004. Deciphering the petrogenesis of deeply buried granites: Whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Transactions of the Royal Society of Edinburgh-Earth Sciences, 95(1?2): 141?159.
[79]  Jiang Y H, Jiang S Y, Dai B Z, Liao S Y, Zhao K D and Ling H F. 2009. Middle to late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China: Implications for a continental arc to rifting. Lithos, 107(3?4): 185?204.
[80]  Ludwig K R. 2002. Squid 1.02: A user manual. Berkeley Geochronological Center Special Publication, 2: 19.
[81]  Maas R, Nicholls I A and Legg C. 1997. Igneous and metamorphic enclaves in the S-type Deddick grano- diorite, Lachlan Fold Belt, SE Australia: Petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. Journal of Petrology, 38(7): 815?841.
[82]  Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of American Bulletin, 101(5): 635?643.
[83]  Pearce J A. 1984. Trace element discrimination diagram for tectonic interpretation of granitic rocks. Journal of Petrology, 25: 656?682.
[84]  Perugini D, Poli G, Christofides G and Eleftheriadis G. 2003. Magma mixing in the Sithonia Plutonic Complex, Greece: Evidence from mafic microgranular enclaves. Mineralogy and Petrology, 78(3?4): 173?200.
[85]  Qiu J S, Wang D Z, McInnes B I A, Jiang S Y, Wang R C and Kanisawa S. 2004. Two subgroups of A-type granites in the coastal area of Zhejiang and Fujian Provinces, SE China: Age and geochemical constraints on their petrogenesis. Transactions of the Royal Society of Edinburgh-Earth Sciences, 95(1?2): 227?236.
[86]  Sawkins F J. 1984. Metal deposits in relation to plate tectonics. Springer Verlay: 1?315.
[87]  Sun S S and McDonough W F. 1989. Chemical and systematics of oceanic basalts: Implication for mantle composition and processes. Geological Society of London, Special Publication, 42: 313?345.
[88]  Taylor R G. 1979. Geology of tin deposits. Amserdam: Elsevier Scientific Publishing Company: 1?543.
[89]  Wang Y J, Fan W M and Guo F. 2003. Geochemistry of early Mesozoic potassium-rich diorites-granodiorites in South- eastern Hunan Province, South China: Petrogenesis and tectonic implications. Geochemical Journal, 37(4): 427 ?448.
[90]  Watson E B and Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters. 64(2): 295?304.
[91]  Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407?419.
[92]  Yang S Y, Jiang S Y, Zhao K D, Jiang Y H, Ling H F and Luo L. 2012. Geochronology, geochemistry and tectonic significance of two Early Cretaceous A-type granites in the Gan-Hang Belt, Southeast China. Lithos, 150: 155?170.
[93]  Zhang K J. 1997. North and South China collision along the eastern and southern North China margins. Tectonophysics, 270(1?2): 145?156.
[94]  Zheng Y F. 1989. Influences of the nature of the initial Rb-Sr system on isochron validity. Chemical Geology, 80(1): 1?l6.
[95]  Zhou X M, Sun T, Shen W Z, Shu L S and Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26?33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133