全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

玄武岩源区母岩的多样性和识别特征:以海南岛玄武岩为例

, PP. 471-488

Keywords: 玄武岩,源区岩性,橄榄石,辉石岩,海南岛

Full-Text   Cite this paper   Add to My Lib

Abstract:

玄武岩源区岩性的识别是岩石学研究的最基本问题之一。一直以来,通常认为地幔橄榄岩是部分熔融产生玄武质岩浆的最主要的源区母岩。然而近年来大量的岩石学和地球化学研究表明,地幔在岩性和地球化学组成上具有很大的不均一性。本文系统地总结了不同的超镁铁质岩石部分熔融产生的熔体所具有的独特的、可识别的地球化学特征,并以此来判别海南岛玄武岩源区母岩的岩性。海南岛玄武岩具有较低的CaO,以及较高的Fe/Mn,Zn/Mn及Zn/Fe比值。与橄榄岩部分熔融形成的熔体结晶的橄榄石相比,海南岛玄武岩中的橄榄石斑晶具有较低的Ca和Mn,以及较高的Ni和Fe/Mn比值。实验岩石学的数据表明,干的地幔橄榄岩,橄榄岩+CO2以及角闪石岩部分熔融形成的熔体都不能作为海南岛玄武岩的源区母岩,而辉石岩熔体则能很好地解释海南岛玄武岩各种主量元素及橄榄石的化学组成特征。原始地幔标准化的不相容元素蛛网图上,海南岛玄武岩呈现Nb-Ta,Rb,Ba,Sr的正异常以及Th,U的负异常特征,指示了玄武岩的源区有再循环洋壳物质的参与。

References

[1]  樊祺诚, 孙谦, 李霓, 隋建立. 2004. 琼北火山活动分期与全新世岩浆演化. 岩石学报, 20(3): 533-544.
[2]  韩江伟, 熊小林, 朱照宇, 王强, 2009. 岩浆过程对玄武岩铁氧化状态和氧逸度的影响: 以雷琼地区晚新生代玄武岩为例. 地球科学――中国地质大学学报, 34(1): 127-136.
[3]  黄振国, 蔡福祥, 韩中元, 陈俊鸿, 宗永强, 林晓东. 1993. 雷琼第四纪火山. 北京: 科学出版社, 1-7.
[4]  刘颖, 刘海臣, 李献华. 1996. 用 ICP-MS 准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558.
[5]  龙文国, 林义华, 石春, 周进波, 吕嫦艳. 2006a. 海南岛北部更新世道堂组的重新厘定. 地质通报, 25(4): 469-474.
[6]  龙文国, 林义华, 朱耀河, 石春, 周进波, 吕嫦艳. 2006b. 海南岛北部第四纪早中更新世多文组的建立. 地质通报, 25(3): 408-414.
[7]  Corgne A, Keshav S, Wood B J, McDonough W F and Fei Y W. 2008. Metal-silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion. Geochimica et Cosmochimica Acta, 72(2): 574-589.
[8]  Dasgupta R, Hirschmann M M and Smith N D. 2007. Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. Journal of Petrology, 48(11): 2093-2124.
[9]  Hirose K. 1997. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophysical Research Letters, 24: 2837-2840.
[10]  Hirose K and Kushiro I. 1993. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4): 477-489.
[11]  Hoang N, Flower M and Carlson R. 1996. Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60(22): 4329-4351.
[12]  Hoernle K, Tilton G, Le Bas M J, Duggen S and Garbe-Sch?nberg D. 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology, 142: 520-542.
[13]  Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219-229.
[14]  Irvine T N and Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548.
[15]  Jackson M G and Dasgupta R. 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth and Planetary Science Letters, 276(1-2): 175- 186.
[16]  Kushiro I. 1996. Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. Geophysical Monograph Series, 95: 109-122.
[17]  Le Bas M J, Le Maitre R W, Streckeisen A. Zanettin B and IUGS Subcommission on the systematic of igneous rocks.1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750.
[18]  Le Roux V, Dasgupta R and Lee C T A. 2011. Mineralogical heterogeneities in the Earth''s mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 307(3-4): 395- 408.
[19]  Le Roux V, Lee C T A and Turner S J. 2010. Zn/Fe systematics in mafic and ultramafic systems: Implica- tions for detecting major element heterogeneities in the Earth''s mantle. Geochimica et Cosmochimica Acta, 74(9): 2779-2796.
[20]  Leeman W P and Scheidegger K F. 1977. Olivine/liquid distribution coefficients and a test for crystal-liquid equilibrium. Earth and Planetary Science Letters, 35(2): 247-257.
[21]  Niu Y L and O’Hara M J. 2008. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective. Journal of Petrology, 49(4): 633-664.
[22]  O’Hara M J and Yoder H S. 1967. Formation and fractionation of basic magmas at high pressures. Scottish Journal of Geology, 3: 67-117.
[23]  Pertermann M and Hirschmann M M. 2002. Trace-element partitioning between vacancy-rich eclogitic clinopyroxene and silicate melt. American Mineralogist, 87: 1365-1376.
[24]  Pertermann M and Hirschmann M M. 2003. Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2~3 GPa. Journal of Petrology, 44(12): 2173-2201.
[25]  Pilet S, Baker M B and Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320: 916-919.
[26]  Pilet S, Hernandez J, Bussy F and Sylvester P J. 2004. Short-term metasomatic control of Nb/Th ratios in the mantle sources of intraplate basalts. Geology, 32(2): 113-116.
[27]  Pilet S, Hernandez J, Sylvester P and Poujol M. 2005. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth and Planetary Science Letters, 236(1-2): 148-166.
[28]  Presley T K, Sinton J M and Pringle M. 1997. Postshield volcanism and catastrophic mass wasting of the Waianae Volcano, Oahu, Hawaii. Bulletin of volcanology, 58: 597-616.
[29]  Putirka K D. 2005. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochemistry Geophysics Geosystems, 6(5). doi: 10.1029/2005GC000915.
[30]  Putirka K D, Perfit M, Ryerson F J and Jackson M G. 2007. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology, 241(3-4): 177-206.
[31]  Putirka K D, Ryerson F J, Perfit M and Ridley W I. 2011. Mineralogy and composition of the Oceanic Mantle. Journal of Petrolology, 52(2): 279?313.
[32]  Qin L P and Humayun M. 2008. The Fe/Mn ratio in MORB and OIB determined by ICP-MS. Geochimica et Cosmochimica Acta, 72: 1660-1677.
[33]  Ren Z Y, Hanyu T, Miyazaki T, Chang Q, Kawabata H, Takahashi T, Hirahara Y, Nichols A R L and Tatsumi Y. 2009. Geochemical differences of the Hawaiian shield lavas: Implications for melting process in the hetero- geneous Hawaiian plume. Journal of Petrology, 50(8): 1553?1573.
[34]  Ren Z Y, Ingle S, Takahashi E, Hirano N and Hirata T. 2005. The chemical structure of the Hawaiian mantle plume. Nature, 436: 837?840.
[35]  Ren Z Y, Shibata T, Yoshikawa M, Johnson K and Takahashi E. 2006. Isotope compositions of submarine Hana ridge lavas, Haleakala volcano, Hawaii: Implication for source compositions, melting process and the structure of the Hawaiian plume. Journal of Petrology, 45(2): 2067?2099.
[36]  Ren Z Y, Takahashi E, Orihashi Y, Johnson K T M. 2004. Petrogenesis of tholeiitic lavas from the submarine Hana Ridge, Haleakala Volcano, Hawaii. Journal of Petrology, 45(10): 2067?2099.
[37]  Schwab B E and Johnston A D. 2001. Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. Journal of Petrology, 42(10): 1789-1811.
[38]  Sobolev A V, Hofmann A W, Brügmann G, Batanova V G and Kuzmin D V. 2008. A quantitative link between recycling and osmium isotopes. Science, 321: 536.
[39]  Wang X C, Li Z X, Li X H, Li J, Liu Y, Long W G, Zhou J B and Wang F. 2012. Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: A consequence of a young thermal mantle plume close to subduction zones? Journal of Petrology, 53(1): 177-233.
[40]  Washington H S. 1925. The chemical composition of the earth. American Journal of Science: 351-378.
[41]  Bergmanis E C, Sinton J M and Trusdell F A. 2000. Rejuvenated volcanism along the southwest rift zone, East Maui, Hawaii. Bulletin of volcanology, 62(4-5): 239-255.
[42]  Bizimis M, Salters V J M and Dawson J B. 2003. The brevity of carbonatite sources in the mantle: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 145(3): 281-300.
[43]  Bowen N L. 1928. The evolution of igneous rocks. New York: Dover, 334.
[44]  Brey G. 1978. Origin of olivine melilitites-chemical and experimental constraints. Journal of Volcanology and Geothermal Research, 3(1-2): 61-88.
[45]  Brey G and Green D H. 1975. The role of CO2 in the genesis of olivine melilitite. Contributions to Mineralogy and Petrology, 49: 93-103.
[46]  Brey G and Green D H. 1976. Solubility of CO2 in olivine melilitite at high pressures and the role of CO2 in the earth’s upper mantle. Contributions to Mineralogy and Petrology, 55(2): 217-230.
[47]  Brey G and Green D H. 1977. Systematic study of liquidas phase relations in olivine melilitite+H2O+CO2 at high pressures and petrogenesis of an olivine melilitite magma. Contributions to Mineralogy and Petrology, 61(2): 141-162.
[48]  Clague D A and Moore J G. 2002. The proximal part of the giant submarine Wailau landslide, Molokai, Hawaii. Journal of Volcanology and Geothermal Research, 113(1-2): 259-287.
[49]  Coombs M L, Clague D A, Moore G F and Cousens B L. 2004. Growth and collapse of Waianae Volcano, Hawaii, as revealed by exploration of its submarine flanks. Geochemistry Geophysics Geosystems, 5(8), Q08006, doi: 10.1029/ 2004GC000717.
[50]  Falloon T J and Danyushevsky L V. 2000. Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: Implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. Journal of Petrology, 41(2): 257-283.
[51]  Fan Q C and Hooper P R. 1991. The Cenozoic basaltic rocks of Eastern China: Petrology and chemical composition. Journal of Petrology, 32(4): 765-810.
[52]  Flower M F J, Zhang M, Chen C Y, Tu K and Xie G H. 1992. Magmatism in the South China Basin: 2. Post-spreading Quaternary basalts from Hainan Island, south China. Chemical Geology, 97: 65-87.
[53]  Green D H and Ringwood A E. 1963. Mineral assemblages in a model mantle composition. Journal of Geophysical Research, 68(3): 937-945.
[54]  Goto A and Tatsumi Y. 1996. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer (II). The Rigaku Journal, 13(2): 20-38.
[55]  Guillou H, Sinton J, Laj C, Kissel C and Szeremeta N. 2000. New K-Ar ages of shield lavas from Waianae volcano, Oahu, Hawaiian Archipelago. Journal of Volcanology and Geothermal Research, 96: 229-242.
[56]  Gunn B M. 1971. Trace element partition during olivine fractionation of Hawaiian basalts. Chemical Geology, 8(1): 1-13.
[57]  Haskins E H and Garcia M O. 2004. Scientific drilling reveals geochemical heterogeneity within the Ko’olau shield, Hawaii. Contributions to Mineralogy and Petrology, 147(2): 162-188.
[58]  Hauri E H. 1996. Major-element variability in the Hawaiian mantle plume. Nature, 382: 415-419.
[59]  Herzberg C. 2006. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature, 444: 605-609.
[60]  Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary islands: Implications for origins. Journal of Petrology, 52: 113-146.
[61]  Herzberg C and Asimow P D. 2008. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry Geophysics Geosystems, 9, Q09001, dio: 10.1029/2008GC002057.
[62]  Hirschmann M M, Kogiso T, Baker M B and Stolper E M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31(6): 481-484.
[63]  Ho K S, Chen J C and Juang W S. 2000. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. Journal of Asian Earth Sciences, 18: 307-324.
[64]  Hoang N and Flower M. 1998. Petrogenesis of Cenozoic basalts from Vietnam: Implication for origins of a ‘diffuse igneous province’. Journal of Petrology, 39: 369-395.
[65]  Hofmann A W. 2003. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements // Carlson R W, Holland H D and Turekian K K. Treatise on Geochemistry: The Mantle and Core. New York: Elsevier: 61-101.
[66]  Hofmann A W and Jochum K P. 1996. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. Journal of Geophysical Research- Solid Earth, 101: 11831-11839.
[67]  Hofmann A W and White W M. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57(2): 421-436.
[68]  Humayun M, Qin L P and Norman M D. 2004. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science, 306: 91-94.
[69]  Jackson M G, Hart S R, Koppers A A P, Staudigel H, Konter J, Blusztajn J, Kurz M and Russell J A. 2007. The return of subducted continental crust in Samoan lavas. Nature, 448: 684-687.
[70]  Kauahikaua J, Cashman K V, Clague D A, Champion D and Hagstrum J T. 2002. Emplacement of the most recent lava flows on Hualalai Volcano, Hawaii. Bulletin of volcanology, 64: 229-253.
[71]  Keshav S, Gudfinnsson G H, Sen G and Fei Y W. 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth and Planetary Science Letters, 223(3-4): 365-379.
[72]  Kogiso T and Hirschmann M M. 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth and Planetary Science Letters, 249(3-4): 188-199.
[73]  Kogiso T, Hirschmann M M and Frost D J. 2003. High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters, 216(4): 603-617.
[74]  Kogiso T, Hirschmann M M and Pertermann M. 2004. High-pressure partial melting of mafic lithologies in the mantle. Journal of Petrology, 45(12): 2407-2422.
[75]  Laporte D, Toplis M J, Seyler M and Devidal J L. 2004. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contributions to Mineralogy and Petrology, 146: 463-484.
[76]  Lassiter J C and Hauri E H. 1998. Osmium-isotope variations in Hawaiian lavas: Evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth and Planetary Science Letters, 164(3-4): 483-496.
[77]  Lipman P W, Sisson T W, Coombs M L, Calvert A and Kimura J I. 2006. Piggyback tectonics: Long-term growth of Kilauea on the south flank of Mauna Loa. Journal of Volcanology and Geothermal Research, 151(1-3): 73-108.
[78]  McDonough W F and Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253.
[79]  McKenzie D and O’Nions R K. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021-1091.
[80]  Moore J G and Clague D. 1987. Coastal lava flows from Mauna Loa and Hualalai volcanoes, Kona, Hawaii. Bulletin of Volcanology, 49: 752-764.
[81]  Nichols A R L, Potuzak M and Dingwell D B. 2009. Cooling rates of basaltic hyaloclastites and pillow lava glasses from the HSDP2 drill core. Geochimica et Cosmochimica Acta, 73(4): 1052-1066.
[82]  Niu Y L and O’Hara M J. 2003. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Ressearch, 108(B4), doi: 10.1029/2002JB002048.
[83]  Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M and Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316: 412-417.
[84]  Sobolev A V, Hofmann A W, and Nikogosian I K. 2000. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature, 404: 986-990.
[85]  Sobolev A V, Hofmann A W, Sobolev S V and Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434: 590-597.
[86]  Sobolev A V, Krivolutskaya N A and Kuzmin D V. 2009. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology, 17(3): 253-286.
[87]  Stracke A and Bourdon B. 2009. The importance of melt extraction for tracing mantle heterogeneity. Geochimica et Cosmochimica Acta, 73(1): 218-238.
[88]  Sun S S and Hanson G N. 1975. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contributions to Mineralogy and Petrology, 52: 77-106.
[89]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313-345.
[90]  Takahashi E, Shimazaki T, Tsuzaki Y and Yoshida H. 1993. Melting study of a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 342: 105-120.
[91]  Thornber C R, Heliker C, Sherrod D R, Kauahikaua J P, Miklius A, Okubo P G, Trusdell F A, Budahn J R, Ian Ridley W and Meeker G P. 2003. Kilauea east rift zone magmatism: An episode 54 perspective. Journal of Petrology, 44(9): 1525-1559.
[92]  Thornber C R, Sherrod D R, Siems D F, Heliker C C, Meeker G P, Oscarson R L and Kauahikaua J P. 2002. Whole-rock and glass major-element geochemistry of Kilauea Volcano, Hawaii, near-vent eruptive products: September 1994 through September 2001. US Geological Survey Open File Report: 2-17.
[93]  Tu K, Flower M F J, Carlson R W, Zhang M and Xie G H. 1991. Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): Implications for a subcontinental lithosphere Dupal source. Geology, 19(6): 567-569.
[94]  Van Der Zander I, Sinton J M and Mahoney J J. 2010. Late shield-stage silicic magmatism at Wai‘anae Volcano: Evidence for hydrous crustal melting in Hawaiian Volcanoes. Journal of Petrology, 51(3): 671-701.
[95]  Walter M J. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1): 29-60.
[96]  Wasylenki L E, Baker M B, Kent JR A and Stolper E M. 2003. Near-solidus melting of the shallow upper mantle: Partial melting experiments on depleted peridotite. Journal of Petrology, 44(7): 1163-1191.
[97]  Weaver B L. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397.
[98]  Wendlandt R F and Mysen B O. 1980. Melting phase relations of nature peridotite+CO2 as a function of degree of partial melting at 15 and 30 kbar. American Mineralogist, 65: 37-44.
[99]  Workman R K and Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72.
[100]  Wyllie P J and Huang W L. 1976. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications. Contributions to Mineralogy and Petrology, 54(2): 79-107.
[101]  Yoder H S and Tilley C E. 1962. Origin of basalt magmas - an experimental study of natural and synthetic rock systems. Journal of Petrology, 3(3): 342-532.
[102]  Zeng G, Chen L H, Xu X S, Jiang S Y and Hofmann A W. 2010. Carbonated mantle sources for Cenozoic intra- plate alkaline basalts in Shandong, North China. Chemical Geology, 273(1-2): 35-45.
[103]  Zhang M, Tu K, Xie G H and Flower M F J. 1996. Subduction-modified subcontinental mantle in South China: Trace element and isotope evidence in basalts from Hainan Island. Chinese Journal of Geochemistry, 15(1): 1-19.
[104]  Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571.
[105]  Zou H B and Fan Q C. 2010. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. Lithos, 116(1-2): 145-152.
[106]  Zou H B, Zindler A, Xu X S and Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chemical Geology, 171(1-2): 33-47.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133