Defant M J and Drummond M S. 1990. Derivation of some modern arcmagmas by melting of young subducted lithosphere. Nature, 347: 662-665.
[50]
Defant M J and Drummond M S. 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21(6): 547-550.
[51]
Defant M J and Kepezhinskas P. 2001. Adakites: A review of slab melting over the past decade and the case for a slab-melt component in arcs. EOS Transactions, 82: 65, 68-69.
[52]
Drummond M S and Defant M J. 1990. A model for trondhjenite-tonalite-dactite genesis and crustal growth via slab melting: Archean to modern composition. Journal of Geophysical Research, 95: 503-521.
[53]
Foley S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28(3-6): 435-453.
[54]
Gao Y F, Hou Z Q, Kamber B S, Wei R H, Meng X J and Zhao R S. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153(1): 105-120.
[55]
Gao Y F, Yang Z S, Santosh M, Hou Z Q, Wei R H and Tian S L. 2010. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119(3-4): 651-663.
[56]
Gill J B. 1981. Orogenic andesites and plate tectonic. New York: Springer-Verlag: 390.
[57]
Guo Z F, Wilson M and Liu J Q. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96(1-2): 205-224.
[58]
Hou Z Q, Gao Y F, Qu X M, Rui Z Y and Mo X X. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220: 139-155.
[59]
Hou Z Q, Ma H W, Zaw K, Zhang Y Q, Wang M J, Wang Z, Pan G T and Tang R L. 2003. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98(1): 125-145.
[60]
Jiang Y H, Jiang S Y, Ling H F and Dai B Z. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters, 241: 617-633.
[61]
Kay R W. 1978. Aleutian magnesium andesites: Melts from subducted Pacific oceanic crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117-132.
[62]
Kay S M and Mpodozis C. 2001. Central Andean ore deposits linked to evolved shallow seduction systems and thickening crust. GSA Today, 11: 4-9.
[63]
Kay S M, Ramos V A and Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South Ameriea. The Journal of Geology, 101(6): 703-714.
[64]
Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B and IUGS Subcommission on the Systematics of Igneous Rocks. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750.
[65]
Liang H Y, Campbell I H, Allen C, Sun W D, Liu C Q, Yu H X, Xie Y W and Zhang Y Q. 2006a. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-159.
[66]
Liang H Y, Yu H X, Mo C H, Zhang Y Q and Xie Y W. 2006b. Zircon LA-ICP-MS U-Pb age Ce4+/Ce3+ ratios and the geochemical features of the Machangqing complex associated the copper deposit. Chinese Journal of Geochemistry, 25(3): 223-229.
[67]
Liang H Y, Zhang Y Q, Xie Y W, Lin W, Campbell I H and Yu H X. 2005. Geochronological and geochemical study on the Yulong porphyry copper ore belt in eastern Tibet, China // Mineral Deposit Research: Meeting the Global Challenge, 1: 1235-1237.
[68]
Miller C, Schuster R, Kl?tzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424.
[69]
Nelson D R. 1992. Isotopic characteristics of potassic rocks: Evidence for the involvement of subducted sediments in magma genesis. Lithos, 28(3-6): 403-420.
[70]
Oyarzun R, Márquez A, Lillo J, López I and Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36: 794-798.
[71]
Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521.
[72]
Plank T and Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394.
[73]
Qu X M, Hou Z Q and Li Y G. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74: 131-148.
[74]
Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98: 1515-1533.
[75]
Stern C R and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281.
[76]
Sun H J, Deng W M and Zhang Y Q. 2001. Petrogenesis of Cenozoic potassic volcanic rocks in the Nangqen Basin. Acta Geologica Sinca, 75(1): 27-40.
[77]
Sun S S and McDonough W F. 1989. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes // Saunders A D and Norry M J. Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345.
[78]
Turner S, Hawkesworth C, Liu J Q, Rogers N, Kelley S and Calsteren P. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50-54.
[79]
Wang J H, Yin A, Harrison T M, Grove M, Zhang Y Q and Xie G H. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 188: 123-133.
[80]
Zindle A and Hart S R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-573.