全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西藏玉龙成矿带斑岩Cu-Mo矿床地质地球化学特征及成矿机制探讨――玉龙和多霞松多对比研究

, PP. 440-454

Keywords: 富碱斑岩,地球化学特征,成矿机制,玉龙铜矿带,藏东

Full-Text   Cite this paper   Add to My Lib

Abstract:

玉龙斑岩铜矿带位于特提斯-喜马拉雅构造域东缘三江构造带的中部,是研究碰撞后喜山期富碱斑岩成岩成矿作用响应的最佳地区。本文选择玉龙和多霞松多两个矿床,分析了两地含矿斑岩的成岩成矿年龄及岩石地球化学特征,并结合Sr-Nd-Pb、S-H-O同位素进一步探讨了与冈底斯含矿斑岩岩浆源区组成、构造控矿模式及深部动力学机制上的差异。赋矿岩体均具有富碱、高K、高Al等钾质碱性岩系列特征,玉龙早期为石英二长斑岩,晚期为花岗闪长斑岩和石英二长斑岩,多霞松多早期为二长花岗斑岩和花岗闪长斑岩,晚期为碱长花岗斑岩,两者明显富集轻稀土和大离子亲石元素Rb、Th、U、Pb,相对亏损高场强元素Nb、Ta、Yb,无明显Eu、Ce负异常。略高于原始地幔现代值的87Sr/86Sr值、较低的εNd(t)、相对均一的206Pb/204Pb值,指示斑岩岩浆可能源自接近于EMⅡ型富集地幔交代成因的石榴石角闪岩和/或角闪榴辉岩的部分熔融,并发生低程度结晶分异,在上升侵位途中受到地壳物质的混染,其形成于古近纪中始新世喜马拉雅期的37~41Ma左右,可能受控于印度板块与欧亚板块碰撞诱发的红河-哀牢山走滑断裂系统,尤其是妥坝-芒康断裂(TBF)左行走滑产生的局部俯冲作用。

References

[1]  蔡新平. 1992. 扬子地台西缘新生代富碱斑岩中的深源包体及其意义. 地质科学, (2): 183-189.
[2]  郭利果, 刘玉平, 徐伟, 张兴春, 秦克章, 李铁胜, 石玉若. 2006. SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约. 岩石学报, 22: 1009-1016.
[3]  侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006a. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型. 中国地质, 33(2): 348-359.
[4]  曲晓明, 侯增谦, 黄卫. 2001. 冈底斯斑岩铜成矿带: 西藏第二条“玉龙”斑岩铜矿带? 矿床地质, 20(4): 355-366.
[5]  芮宗瑶, 黄崇轲, 齐国明. 1984. 中国斑岩铜(钼)矿. 北京: 地质出版社: 1-300.
[6]  芮宗瑶, 张立生, 陈振宇, 王龙生, 刘玉琳, 王义天. 2004. 斑岩铜矿的源岩或源区探讨. 岩石学报, 20(2): 229-238.
[7]  张旗, 秦克章, 王元龙, 张福勤, 刘红涛, 王焰. 2004. 加强埃达克岩研究, 开创中国Cu, Au等找矿工作的新局面. 岩石学报, 20(2): 195-204.
[8]  Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753-756.
[9]  Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224.
[10]  常印佛, 刘湘培, 吴言昌. 1991. 长江中下游成矿带. 北京: 地质出版社: 1-379.
[11]  陈建林, 许继峰, 任江波. 2011. 俯冲型和碰撞型含矿斑岩地球化学组成的差异. 岩石学报, 27(9): 2733-2742.
[12]  陈建平, 唐菊兴, 丛源, 董庆吉, 郝金华. 2009. 藏东玉龙斑岩铜矿地质特征及成矿模型. 地质学报, 83(12): 1887-1900.
[13]  从柏林, 张雯华, 叶大年. 1992. 华北断块新生代玄武岩的研究. 地质学报, 66(2): 112-123.
[14]  邓万明, 黄萱, 钟大赉. 1998. 滇西新生代富碱斑岩的岩石特征与成因. 地质科学, 33(2): 412-425.
[15]  邓万明, 孙宏娟, 张玉泉. 2001. 囊谦盆地新生代钾质火山岩成因岩石学研究. 地质科学, 36(3): 304-318.
[16]  董冰华, 夏斌, 张玉泉. 2013. 藏东玉龙钾质碱性花岗岩地球化学、?云母40Ar-39Ar年龄及其地质意义. 未刊.
[17]  付建明, 马昌前, 谢才富, 张业明, 彭松柏. 2005. 湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析. 地球化学, 34(3): 215-226.
[18]  侯增谦, 潘桂棠, 王安建, 莫宣学, 田世洪, 孙晓明, 丁林, 王二七, 高永丰, 谢玉玲, 曾普胜, 秦克章, 许继峰, 曲晓明, 杨志明, 杨竹森, 费红彩, 孟祥金, 李振清. 2006b. 青藏高原碰撞造山带: II. 晚碰撞转换成矿作用. 矿床地质, 25 (5): 521- 543.
[19]  侯增谦, 潘小菲, 杨志明, 曲晓明. 2007. 初论大陆环境斑岩铜矿. 现代地质, 21(2): 332-351.
[20]  姜耀辉, 蒋少涌, 凌洪飞, 戴宝章. 2006. 陆-陆碰撞造山环境下含铜斑岩岩石成因: 以藏东玉龙斑岩铜矿带为例. 岩石学报, 22: 697-706.
[21]  李荫清. 1984. 玉龙某些中酸性侵入岩和火山杂岩中的熔融和流体包裹体. 中国地质科学院院报, 85-106.
[22]  李荫清. 1985. 我国几个重要(主要)斑岩铜(钼)矿床的包裹体演化机制及成矿pH条件. 矿床地质, 4(2): 51-60.
[23]  梁华英. 2002. 青藏高原东南缘斑岩铜矿成岩成矿研究取得新进展. 矿床地质, 21(4): 365.
[24]  梁华英, 莫济海, 孙卫东, 喻亨祥, 张玉泉, Charllote M A. 2008. 藏东玉龙超大型斑岩铜矿床成岩成矿系统时间跨度分析. 岩石学报, 24(10): 2352-2358.
[25]  梁华英, 莫济海, 孙卫东, 张玉泉, 曾提, 胡光黔, Charllote M A. 2009. 玉龙铜矿带马拉松多斑岩体岩石学及成岩成矿系统年代学分析. 岩石学报, 25(2): 385-392.
[26]  梁华英, 孙卫东, 喻亨祥, 谢应雯, 莫济海, 张玉泉. 2006. 西藏东缘玉龙斑岩铜矿带含矿岩体时代及斑岩铜金矿床形成研究. 矿床地质, 25: 415-418.
[27]  刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品40余种微量元素. 地球化学, 25(6): 552-558.
[28]  马鸿文. 1989. 论藏东玉龙斑岩铜矿带岩浆侵入时代. 地球化学, (3): 210-216.
[29]  马鸿文. 1990. 西藏玉龙斑岩铜矿带花岗岩类与成矿. 武汉: 中国地质大学出版社: 1-158.
[30]  孟祥金. 2004. 西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究. 北京: 中国地质科学院博士论文: 1-104.
[31]  唐菊兴, 张丽, 李志军, 陈建平, 黄卫, 王乾. 2006. 西藏玉龙铜矿床――鼻状构造圈闭控制的特大型矿床. 矿床地质, 25(6): 654-662.
[32]  唐仁鲤, 罗怀松, 李荫清. 1995. 西藏玉龙铜(钼)矿带地质. 北京: 地质出版社: 76-96.
[33]  王保弟, 陈陵康, 许继峰, 刘鸿飞, 陈建林, 康志强. 2010. 拉萨地块麻江地区具有“超钾质”成分的钾质火山岩的识别及成因. 岩石学报, 27(6): 1662-1674.
[34]  王建, 李建平, 王江海. 2003. 滇西大理-剑川地区钾玄质岩浆作用: 后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究. 岩石学报, 19(1): 61-69.
[35]  王强, 唐功建, 贾晓辉, 资锋, 姜子琦, 许继峰, 赵振华. 2008. 埃达克质岩的金属成矿作用. 高校地质学报, 14: 350-364.
[36]  王强, 赵振华, 许继峰, 白正华, 王建新, 刘成新. 2004. 鄂东南铜山口、殷祖埃达克质(adakite)的侵入岩地球化学特征对比: (拆沉)下地壳熔融与斑岩铜矿的成因. 岩石学报, 20(2): 351-360.
[37]  王增, 申屠保涌, 丁朝建. 1995. 藏东花岗岩类及其成矿作用. 成都: 西南交通大学出版社: 150-151.
[38]  王治华, 郭晓东, 陈祥, 葛良胜, 邹依林. 2010. 云南祥云马厂箐富碱斑岩体的地球化学特征及其形成的构造环境. 地质评论, 56(1): 125-135.
[39]  伍静, 梁华英, 莫济海, 张玉泉, 胡光黔. 2011. 玉龙斑岩铜矿带莽总含矿斑岩体岩石学特征及锆石U-Pb年龄研究. 大地构造与成矿学, 35(2): 300-306.
[40]  曾普胜, 侯增谦, 高永峰, 杜安道. 2006. 印度-亚洲碰撞带东段喜马拉雅期铜-钼-金矿床Re-Os年龄及成矿作用. 地质论评, 52(1): 72-84.
[41]  张玉泉, 谢应雯, 李献华, 邱华宁, 赵振华, 梁华英, 钟孙霖. 2000. 青藏高原东部钾玄岩浆岩同位素特征: 岩石成因及构造意义. 中国科学(D辑), 30(5): 493-498.
[42]  张玉泉, 谢应雯, 梁华英, 邱华宁, 李献华, 钟孙霖. 1998. 藏东玉龙铜矿带含矿斑岩及成岩系列. 地球化学, 27(3): 236-243.
[43]  张玉泉, 钟孙霖. 1997. 藏东玉龙铜矿带含矿斑岩演化与成矿关系. 西藏地质, 18: 73-86.
[44]  赵欣, 喻学惠, 莫宣学, 张瑾, 吕伯西. 2004. 滇西新生代富碱斑岩及其深源包体的岩石学和地球化学特征. 现代地质, 18(2): 217-228.
[45]  钟大赉, 丁林, 刘福田, 刘建华, 张进江, 季建清, 陈辉. 2000. 造山带岩石层多向层架构造及其对新生代岩浆活动制约――以三江及邻区为例. 中国科学(D辑), 30(1): 1-8.
[46]  周宜吉. 1980. 玉龙矿带中斑岩铜矿的控矿因素及其成因探讨. 地质论评, 26(4): 357-361.
[47]  周宜吉. 1985. 试论玉龙斑岩铜矿带内矿床的蚀变和矿化分带. 矿床地质, 4(2): 23-30.
[48]  朱训, 黄崇输, 芮宗瑶. 1983. 德兴斑岩铜矿. 北京: 地质出版社: 1-314.
[49]  Defant M J and Drummond M S. 1990. Derivation of some modern arcmagmas by melting of young subducted lithosphere. Nature, 347: 662-665.
[50]  Defant M J and Drummond M S. 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21(6): 547-550.
[51]  Defant M J and Kepezhinskas P. 2001. Adakites: A review of slab melting over the past decade and the case for a slab-melt component in arcs. EOS Transactions, 82: 65, 68-69.
[52]  Drummond M S and Defant M J. 1990. A model for trondhjenite-tonalite-dactite genesis and crustal growth via slab melting: Archean to modern composition. Journal of Geophysical Research, 95: 503-521.
[53]  Foley S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28(3-6): 435-453.
[54]  Gao Y F, Hou Z Q, Kamber B S, Wei R H, Meng X J and Zhao R S. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153(1): 105-120.
[55]  Gao Y F, Yang Z S, Santosh M, Hou Z Q, Wei R H and Tian S L. 2010. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119(3-4): 651-663.
[56]  Gill J B. 1981. Orogenic andesites and plate tectonic. New York: Springer-Verlag: 390.
[57]  Guo Z F, Wilson M and Liu J Q. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96(1-2): 205-224.
[58]  Hou Z Q, Gao Y F, Qu X M, Rui Z Y and Mo X X. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220: 139-155.
[59]  Hou Z Q, Ma H W, Zaw K, Zhang Y Q, Wang M J, Wang Z, Pan G T and Tang R L. 2003. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98(1): 125-145.
[60]  Jiang Y H, Jiang S Y, Ling H F and Dai B Z. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters, 241: 617-633.
[61]  Kay R W. 1978. Aleutian magnesium andesites: Melts from subducted Pacific oceanic crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117-132.
[62]  Kay S M and Mpodozis C. 2001. Central Andean ore deposits linked to evolved shallow seduction systems and thickening crust. GSA Today, 11: 4-9.
[63]  Kay S M, Ramos V A and Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South Ameriea. The Journal of Geology, 101(6): 703-714.
[64]  Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B and IUGS Subcommission on the Systematics of Igneous Rocks. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750.
[65]  Liang H Y, Campbell I H, Allen C, Sun W D, Liu C Q, Yu H X, Xie Y W and Zhang Y Q. 2006a. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-159.
[66]  Liang H Y, Yu H X, Mo C H, Zhang Y Q and Xie Y W. 2006b. Zircon LA-ICP-MS U-Pb age Ce4+/Ce3+ ratios and the geochemical features of the Machangqing complex associated the copper deposit. Chinese Journal of Geochemistry, 25(3): 223-229.
[67]  Liang H Y, Zhang Y Q, Xie Y W, Lin W, Campbell I H and Yu H X. 2005. Geochronological and geochemical study on the Yulong porphyry copper ore belt in eastern Tibet, China // Mineral Deposit Research: Meeting the Global Challenge, 1: 1235-1237.
[68]  Miller C, Schuster R, Kl?tzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424.
[69]  Nelson D R. 1992. Isotopic characteristics of potassic rocks: Evidence for the involvement of subducted sediments in magma genesis. Lithos, 28(3-6): 403-420.
[70]  Oyarzun R, Márquez A, Lillo J, López I and Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36: 794-798.
[71]  Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521.
[72]  Plank T and Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394.
[73]  Qu X M, Hou Z Q and Li Y G. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74: 131-148.
[74]  Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98: 1515-1533.
[75]  Stern C R and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281.
[76]  Sun H J, Deng W M and Zhang Y Q. 2001. Petrogenesis of Cenozoic potassic volcanic rocks in the Nangqen Basin. Acta Geologica Sinca, 75(1): 27-40.
[77]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes // Saunders A D and Norry M J. Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345.
[78]  Turner S, Hawkesworth C, Liu J Q, Rogers N, Kelley S and Calsteren P. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50-54.
[79]  Wang J H, Yin A, Harrison T M, Grove M, Zhang Y Q and Xie G H. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 188: 123-133.
[80]  Zindle A and Hart S R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-573.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133