全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青海开心岭二叠纪铁矿床富磁铁矿体的地质特征及成因分析

, PP. 422-439

Keywords: 开心岭铁矿床,富磁铁矿体,海底火山沉积变质

Full-Text   Cite this paper   Add to My Lib

Abstract:

青藏高原沱沱河南开心岭地区,位于高原腹地北羌塘构造区,晚古生代二叠纪为滨-浅海古地理环境。该地区二叠纪铁矿床由磁铁矿体、赤铁矿体和褐铁矿体组成。富磁铁矿体上部为煤层,下部为灰岩。研究区剖面1层状富磁铁矿有两层,厚度分别为14.4m、16.0m,矿石TFe品位为66.30%、64.00%,具有深色和浅色矿物相间的层状特征,深色层为磁铁矿,浅色层为石英、角闪石和方解石,两层之间为5m厚的赤铁矿层和22m厚的蚀变辉绿玢岩,赤铁矿石TFe品位为22.20%;剖面2位于剖面1东南方向1.2km,致密块状富磁铁矿单层厚1.52m,磁铁矿石TFe品位为63.87%,具有方解石、白云石组成的细脉,宽小于0.5mm。在两种类型富磁铁矿石中除主要矿物磁铁矿外,还有少量赤铁矿、针铁矿、石英、角闪石、方解石、白云石、氟磷灰石、普通辉石、方铅矿、石墨和绿泥石等矿物,并发现了磁铁矿晶体的环带构造特征。根据磁铁矿形成的古地理环境、地层、围岩特征,结合矿石和围岩显微镜鉴定结果,和矿石的化学分析、X衍射分析、光谱半定量分析、电子探针分析、激光拉曼光谱分析结果,综合研究认为,磁铁矿体的形成与海底火山沉积变质作用及后期热液蚀变作用有关,可能是在海底特殊的构造条件下,岩浆喷发或侵入之后,由于海水的参与,来自岩浆或海底热液中的磁铁矿在海底一定的物理化学环境中沉积富集而成。该地区有望成为重要的矿产地。

References

[1]  北京大学地质系岩矿教研室编. 1979. 光性矿物学. 北京: 地质出版社: 1-473.
[2]  范良伍, 张乾, 温汉捷. 2008. 安庆铜铁矿床磁铁矿成矿机理探讨. 矿物学报, 28(4): 476-482.
[3]  龚荣洲, 於崇文, 岑况. 2000. 成矿元素富集机制的量子地球化学研究――以攀枝花钒钛磁铁矿矿床为例. 地学前缘, 7(1): 43-51.
[4]  贾建称. 2008. 西藏羌塘盆地东部中生代构造古地理特征及演化. 古地理学报, 10(6): 613-625.
[5]  蒋少涌, 丁涕平, 万德芳, 李延河. 1992. 辽宁弓长岭太古代条带状硅铁建造(BIF)的硅同位素组成特征. 中国科学(B辑), (6): 626-631.
[6]  李洪普, 陈学明, 左志勇, 窦全成, 芦文泉. 2012. 三江成矿带开心岭矿区尕的考组火山活动与多金属矿的成矿关系. 西北地质, 45(1): 71-78.
[7]  李曙光. 1982. 弓长岭富磁铁矿床成因的地球化学模型. 地球化学, 11(2): 113-121.
[8]  李曙光, 支霞臣, 陈江峰, 王俊新, 邓衍尧. 1983. 鞍山前寒武纪条带状含铁建造中石墨的成因. 地球化学, 12(2): 162-169.
[9]  李文臣. 1992. 攀枝花钒钛磁铁矿矿床地质及其成因. 地质与勘探, 10: 18-21.
[10]  廖卓庭, 徐均涛. 2002. 青海格尔木市乌丽晚二叠世乌丽群下部的腕足化石群及Waagenites 的地理分布. 古生物学报, 41(1): 130-136.
[11]  王智琳, 许德如, 张玉泉, 陈福雄, 王力, 吴俊. 2011. 海南石碌铁矿床花岗闪长斑岩的锆石LA-ICP-MS U-Pb定年及地质意义. 大地构造与成矿学, 35(2): 292- 299.
[12]  夏楚林, 任二峰, 高莉. 2011. 青海省扎日根开心岭群火山岩成矿地质条件分析. 甘肃科技, 27(7): 40-42.
[13]  夏建明, 王恩德, 赵纯福, 门业凯. 2011. 弓长岭富铁矿氧化还原环境的形成机制. 东北大学学报(自然科学版), 32(11): 1643-1646.
[14]  肖波, 潘永信. 2006. 磁铁矿的低温磁学性质研究进展. 地球物理学进展, 21(2): 408-415.
[15]  徐西雷, 权福华, 魏文俊, 孙国栋. 2001. 金岭铁矿区成矿规律研究. 矿业快报, 24: 9-11.
[16]  张洪武, 谢丽霞. 2001. 对雅满苏铁矿矿床成因的新认识. 长春工程学院学报(自然科学版), 2(4): 26-29.
[17]  Dupuis C and Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Deposita, 46: 319-335.
[18]  Elmore R D, Engel M H, Crawford L, Nick K, Imbus S and Sofer Z. 1987. Evidence for a relationship between hydrocarbons and authigenic magnetite. Nature, 325: 428-430.
[19]  Evans B W. 2010. Lizardite versus antigorite serpentinite: Magnetite, hydrogen, and life(?). Geology, 38(10): 879-882. Hodych J P. 1982. Magnetostrictive control of coercive force in multidomain magnetite. Nature, 298: 542-544.
[20]  Hwang S L, Yui T F, Chu H T, Shen P Y, Iizuka Y, Yang H Y, Yang J S and Xu Z Q. 2008. Hematite and magnetite precipitates in olivine from the Sulu peridotite: A result of dehydrogenation-oxidation reaction of mantle olivine? American Mineralogist, 93(7): 1051-1060.
[21]  Stolz J F, Chang S B R and Kirschvink J L. 1986. Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature, 321: 849-851.
[22]  Suk D, Peacor D R and Voo R V. 1990. Replacement of pyrite framboids by magnetite in limestone and implications for palaeomagnetism. Nature, 345: 611- 613.
[23]  Sun W D, Arculus R J, Kamenetsky V S and Binns R A. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431: 975-978.
[24]  Torab F M and Lehmann B. 2007. Magnetite-apatite deposits of the Bafq district, Central Iran: Apatite geochemistry and monazite geochronology. Mineralogical Magazine, 71(3): 347-363.
[25]  Valley P M, Hanchar J M and Whitehouse M J. 2011. New insights on the evolution of the Lyon Mountain Granite and associated Kiruna-type magnetite-apatite deposits, Adirondack Mountains, New York State. Geosphere, 7(2): 357-389.
[26]  Wood B J, Bryndzia L T and Johnson K E. 1990. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science, 248: 337- 345.
[27]  刘广才. 1993. 唐古拉山中段开心岭群乌丽群的时代定义问题. 青海地质, (1): 1-9.
[28]  刘广才, 田琪. 1993. 青海唐古拉山中段地区二叠纪地层新资料. 中国地区域质, (2): 113-120.
[29]  刘金长. 1997. 黑鹰山富矿脱磷试验研究. 矿物岩石地球化学通报, 16(S1): 85-87.
[30]  刘军, 靳淑韵. 2010. 辽宁弓长岭铁矿磁铁富矿的成因研究. 现代地质, 24(1): 80-88.
[31]  钱霞. 2008. 生物体内的磁铁矿(Fe3O4)粒子. 物理, 37(4): 256-259.
[32]  青海省地质矿产局. 1997. 青海省岩石地层(全国地层多重划分对比研究). 武汉: 中国地质大学出版社: 1- 340.
[33]  任二峰, 周兵, 孙照华, 刘凯. 2011. “三江”北段开心岭地区早二叠世火山岩地球化学特征及构造意义. 中国矿物岩石地球学会第13届学术年会论文集: 89.
[34]  任留东, 牛宝贵, 吴春明, 任纪舜. 2008. 大别山霓辉花岗片麻岩中磁铁矿的形成. 矿物岩石, 28(4): 36-42.
[35]  任留东, 杨崇辉, 杜利林. 2009. 阜平杂岩中低品位磁铁矿的形成与深熔作用的关系. 矿床地质, 28(5): 653 -662.
[36]  王慧媛, 彭晓蕾. 2008. 辽宁凤城翁泉沟硼铁矿床磁铁矿的成因研究. 中国地质, 35(6): 1299-1306.
[37]  王贤孝, 鄂琴莲, 李德刚. 2011. 浅析青海省格尔木市开心岭锌矿矿床成因及找矿远景评价. 科技信息, 11: 762-763.
[38]  杨冰林. 2010. 内蒙古黑鹰山铁矿C10异常区矿床地质特征. 甘肃科技, 26(12): 35-37.
[39]  杨志明, 侯增谦, Noel C White, 杨开辉, 宋玉财, 王召林. 2008. 青海南部熔积岩的发现: 对寻找VMS型矿床的重要启示. 矿床地质, 27(3): 336-344.
[40]  赵振明, 陈守建, 计文化, 查显锋, 张海军, 刘亚非. 2012.东昆仑小南川中-新元古界万保沟群地层中富磁铁矿层的发现及意义. 地质通报, 31(12): 1991-2000.
[41]  Barbosa P F and Lagoeiro L. 2010. Crystallographic texture of the magnetite-hematite transformation: Evidence for topotactic relationships in natural samples from Quadrilátero Ferrífero, Brazil. American Mineralogist, 95(1): 118-125.
[42]  Bazylinski D A, Frankel R B and Jannasch H W. 1988. Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature , 334: 518- 519.
[43]  Blakely R J, Brocher T M and Wells R E. 2005. Subduction- zone magnetic anomalies and implications for hydrated forearc mantle. Geology, 33(6): 445-448.
[44]  Brownlee S J, Feinberg J M, Harrison R J, Kasama T, Scott G R and Renne P R. 2010. Thermal modification of hematite-ilmenite intergrowths in the Ecstall pluton, British Columbia, Canada. American Mineralogist, 95(1): 153-160.
[45]  Coker V S, Pearce C I, Lang C, van de Laan G, Pattrick R A D, Telling N D, Schüler D, Arenholz E and Lloyd J R. 2007. Cation site occupancy of biogenic magnetite compared to polygenic ferrite spinels determined by X-ray magnetic circular dichroism. European Journal of Mineralogy, 19(5): 707-716.
[46]  Jenner F E, O’Neill H ST C, Arculus R J and Mavrogenes J A. 2010. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. Journal of Petrology, 51 (12): 2445-2464.
[47]  Karlin R, Lyle M and Heath G R. 1987. Authigenic magnetite formation in suboxic marine sediments. Nature, 326: 490-493.
[48]  Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90(10): 1473-1499.
[49]  Liang H Y, Sun W D, Su W C and Zartman R E. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104(4): 587- 596.
[50]  Lovley D R, Stolz J F, Nord Jr G L and Phillips E J P. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330: 252-254.
[51]  Maier W D, Barnes S J , Gartz V and Andrews G. 2003. Pt-Pd reefs in magnetitites of the Stella layered intrusion, South Africa: A world of new exploration opportunities for platinum group elements. Geology, 31(10): 885-888.
[52]  Mann S, Frankel R B and Blakemore R P. 1984. Structure, morphology and crystal growth of bacterial magnetite. Nature, 310: 405-407.
[53]  Roh Y, Zhang C L, Vali H, Lauf R J, Zhou J and Phelps T J. 2003. Biogeochemical and environmental factors in Fe biomineralization: Magnetite and siderite formation. Clays and Clay Minerals, 51(1): 83-95.
[54]  Rossetti P, Gatta G D, Diella V, Carbonin S, Giusta A D and Ferrario A. 2009. The magnetite ore districts of the southern Aosta Valley (Western Alps, Italy): A mineralogical study of metasomatized chromite ore. Mineralogical Magazine, 73(5): 737-751.
[55]  Sakaguchi T, Burgess J G and Matsunaga T. 1993. Magnetite formation by a sulphate-reducing bacterium. Nature, 365: 47-49.
[56]  Schumann D, Raub T D, Kopp R E, Guerquin-Kern J L, Wu T D, Rouiller I, Smirnov A V, Sears S K, Lücken U, Tikoo S M, Hesse R, Kirschvink J L and Vali H. 2008. Gigantism in unique biogenic magnetite at the Paleocene?Eocene Thermal Maximum. PNAS, 105(46): 17648-17653.
[57]  Scott E R D, Taylor G J, Rubin A E, Keil K and Okada A. 1981. Graphite?magnetite aggregates in ordinary chondritic meteorites. Nature, 291: 544-546.
[58]  Shau Y H, Peacor D R and Essene E J. 1993. Formation of magnetic single-domain magnetite in ocean ridge basalts with implications for sea-floor magnetism. Science, 261: 343-345.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133