全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华夏陆块古元古代A型流纹斑岩的发现及其地质意义

, PP. 499-510

Keywords: 古元古代,A型流纹斑岩,锆石U-Pb-Hf同位素,北武夷,华夏陆块

Full-Text   Cite this paper   Add to My Lib

Abstract:

华夏陆块前寒武纪构造-岩浆演化过程一直存在诸多争议,作者首次在华夏陆块北武夷淡竹地区发现了A型流纹斑岩。对淡竹A型流纹斑岩的LA-ICP-MS锆石U-Pb定年,结果表明其形成于1819±16Ma,为古元古代岩浆活动的产物。流纹斑岩具有高Si富碱,贫Ca、Mg和高FeOT/MgO比值的特点;稀土总量较高(∑REE=626×10?6~765×10?6),轻重稀土分馏明显((La/Yb)N=14.3~28.1),Eu负异常显著(δEu=0.29~0.42);微量元素以富集Rb、Ga、Th和U,亏损Ba、Sr、Nb、Ta、Eu和Ti为特征,与A型花岗岩(流纹岩)相似。锆石Hf同位素研究显示,流纹斑岩具较低的εHf(t)值,介于?8.4~?2.2之间,二阶段Hf模式年龄(t2DM)变化于2.46~2.76Ga。结合区域研究成果,认为流纹斑岩来源于新太古代陆壳物质的部分熔融,形成于板内伸展拉张的构造环境。

References

[1]  陈正宏, 李寄?, 谢佩珊, 曾雯, 周汉文. 2008. 利用EMP独居石定年法探讨浙闽武夷山地区变质基底岩石与花岗岩的年龄. 高校地质学报, 14(1): 1?15.
[2]  甘晓春, 李惠民, 孙大中, 金文山, 赵风清. 1995. 浙西南古元古代花岗质岩石的年代. 矿物岩石学杂志, 14(1): 1?8.
[3]  侯可军, 袁顺达. 2010. 宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义. 岩石学报, 26(3): 888?1002.
[4]  胡雄健, 许金坤, 童朝旭. 1992. 浙西南前寒武纪地质. 北京: 地质出版社: 1?278.
[5]  金文山, 庄建民, 杨传夏. 1992. 福建前加里东区域变质岩系的岩石学、地球化学和变质作用特征. 福建地质, 11: 241?251.
[6]  舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418?431.
[7]  吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589?1604.
[8]  闫峻, 彭戈, 刘建敏, 李全忠, 陈志洪, 史磊, 刘晓强, 姜子朝. 2012. 下扬子繁昌地区花岗岩成因: 锆石年代学和Hf-O同位素制约. 岩石学报, 28(10): 3209? 3227.
[9]  于津海, O’Reilly S Y, 王丽娟, Griffin W L, 蒋少涌, 王汝成, 徐夕生. 2007. 华夏地块古老物质的发现和前寒武纪地壳的形成. 科学通报, 52(1): 11?18.
[10]  郑永飞, 张少兵. 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 52(1): 1?10.
[11]  Ames L, Tilton G R and Zhou G. 1993. Timing of collision of the Sino-Korean and Yangtse cratons: U-Pb zircon dating of coesite-bearing eclogites. Geology, 21: 339?342.
[12]  Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192: 59?79.
[13]  Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46: 605?626.
[14]  Belousova E A, Griffin W L, O’Reilly S Y and Fisher N I. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143: 602?622.
[15]  Blichert?Toft J and Albarède F. 1997. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148: 243?258.
[16]  Jahn B M. 1998. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen: Implications for continental subduction and collisional tectonics // Hacker B R and Liou J G. When Continental Collide: Geodynamics and Geochemistry of Ultrahigh- Pressure Rocks, Kluwer Academic Publishers, Netherlands: 203?239.
[17]  King P L, White A J R, Chappell B W and Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38: 371?391.
[18]  Lepvrier C, Maluski H, Van T V, Leyreloup A, Phan T T and Nguyen V V. 2004. The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif): Implications for the geodynamic evolution of Indochina. Tectonophysics, 393(1?4): 87?118.
[19]  Li S G, Xiao Y L, Liou D L, Chen Y Z, Ge N J, Zhang Z Q, Sun S S, Cong B, Zhang R Y, Hart S R and Wang S S. 1993. Collision of the North China and Yangtse blocks and formation of coesite-bearing eclogites: Timing and processes. Chem Geol, 109(1?4): 89?111.
[20]  Li W X, Li X H and Li Z X. 2005. Neoproterozoic bimodal magmatismin the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 136: 51?66.
[21]  Li X H. 1997. Timing of the Cathaysia Block formation: Constraints from SHRIMP U-Pb zircon geochronology. Episodes, 20: 188?192.
[22]  Li X H, Sun M, Wei G J, Liu Y, Lee C Y and Malpas J. 2000. Geochemical and Sm-Nd isotopic study of amphibo- lites in the Cathaysia Block, southeastern China: Evidence for an extremely depleted mantle in the Paleoproterozoic. Precambrian Research, 102: 251? 262.
[23]  Li Z X and Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A fiat-slab subduction model. Geology, 35(2): 179?182.
[24]  Li Z X, Li X H, Wartho J A, Clark C, Li W X, Zhang C L and Bao C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 122: 772?793.
[25]  Liu R, Zhou H, Zhang L, Zhong Z, Zeng W, Xiang H, Jin S, Lu X and Li C. 2009. Paleoproterozoic reworking of ancient crust in the Cathaysia Block, South China: Evidence from zircon trace elements, U-Pb and Lu-Hf isotopes. Chinese Science Bulletin, 54: 1543?1554.
[26]  Liu Y, Gao S, Hu Z, Gao C, Zong K and Wang D. 2010. Continental and oceanic crust recycling-induced melt- peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51: 537?571.
[27]  Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34?43.
[28]  Loiselle M C and Wones D R. 1979. Characteristics of anorogenic granites. Geological Society of America Abstracts with Programs, 11: 468.
[29]  Ludwig K R. 2001. ISOPLOT 2.49: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication, 1: 1?58.
[30]  Mushkin A, Navon O, Halicz L, Hartmann G and Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832.
[31]  Peng P, Zhai M G, Richard E E, Guo J H, Liu F and Hu B. 2008. A 1.78 Ga large igneous province in the North China craton: The Xiong’er Volcanic Province and the North China dyke swarm. Lithos, 101: 260?280.
[32]  Rogers J J W and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gond- wana Research, 5: 5?22.
[33]  Rudnick R L, Gao S, Ling W L, Liu Y S and McDonough W F. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77: 609?637.
[34]  Scherer E, Munker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293: 683?687.
[35]  Sun M, Chen N, Zhao G, Wilde S A, Ye K, Guo J, Chen Y and Yuan C. 2008. U-Pb Zircon and Sm-Nd isotopic study of the Huangtuling granulite, Dabie-Sulu belt, China: Implication for the Paleoproterozoic tectonic history of the Yangtze Craton. American Journal of Science, 308: 69?483.
[36]  Xiang H, Zhang L, Zhou H W, Zhong Z Q and Zeng W. 2008. Geochronology and Hf isotopes of zircon from mafic-ultramafic basement rocks of southwestern Zhejiang: Response to the Indosinian orogeny of the metamorphic basement of the Cathaysia Block. Science in China (Series D?Earth Sciences), 51: 788?800.
[37]  Xu X S, O’Reilly S Y, Griffin W L, Wang X L, Pearson N J and He Z Y. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158: 51?78.
[38]  Yu J H, Wang L J, Griffin W L, O’Reilly S Y, Zhang M, Li C Z and Shu L S. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research, 174: 347?363.
[39]  Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S and Wu F Y. 2006. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 151: 265?288.
[40]  Zhao G C, Cawood P A, Wilde S A and Sun M. 2002. A review of the global 2.1?1.8 Ga orogens: Implications for a pre-Rodinian supercontinent. Earth Science Reviews, 59: 125?162.
[41]  Zhao G C, He Y H and Sun M. 2009. The Xiong’er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16: 170?181.
[42]  Zhao G C, Sun M, Wilde S A and Li S Z. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth Science Reviews, 67: 91? 123.
[43]  吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217?1238.
[44]  Carter A, Roques D, Bristow C and Kinny P. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29(3): 211?214.
[45]  Chen Z H and Xing G F. Petrogenesis of a Paleoproterozoic S-type granite, central Wuyishan terrane, SE China: Implications for crustal evolution of the Cathaysia Block. International Geology Review, doi.org/10.1080/ 00206814.2013.779065, in press.
[46]  Clemens J D, Holloway J R and White A J R. 1986. Origin of an A-type granite: Experimental constraints. American Mineralogist, 71: 317?324.
[47]  Condie K C. 1998. Episodic continental growth and supercontinents: A mantle avalanche connection? Earth Planet Sci Let, 163: 97?108.
[48]  Condie K C. 2000. Episodic continental growth models: Afterthoughts and extensions. Tectonophysics, 322: 153?162.
[49]  Condie K C, Des Marais D J and Abbott D. 2001. Precambrian superplumes and supercontinents: A record in black shales, carbon isotopes, and paleoclimates? Precambrian Res, 106: 239?260.
[50]  Griffin W L, Pearson N J, Elusive E, Jackson S E, Van A E, O’Reilly, S Y and She S R. 2000. The Hf isotope composition of carbonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133?147.
[51]  Griffin W L, Wang X, Jackson S E, Pearson N J, O’Reilly S Y, Xu X S and Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237?269.
[52]  He Y H, Zhao G C, Sun M, and Xia X P. 2009. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: Implications for the Paleo-Meso- proterozoic evolution of the southern margin of the North China Craton. Precambrian Research, 168: 213?222.
[53]  Hou G, Santosh M, Qian X, Lister G S and Li J. 2008. Configuration of the Late Paleoproterozoic super- continent Columbia: insights from radiating mafic dyke swarms. Gondwana Research, 14: 395?409.
[54]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes // Saunder A D and Norry M J. Magmatism in the ocean basins. Geological Society Special Publications, 42: 313?345.
[55]  Wan Y S, Liu D Y, Xu M H, Zhuang J, Song B, Shi Y and Du L. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia Block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research, 12: 166? 183.
[56]  Wang Y J, Zhao G C, Fan W M, Peng T P, Sun L H and Xia X P. 2007. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province: Implications for back-arc basin magmatism in the Eastern Block, North China Craton. Precambrian Research, 154: 107?124.
[57]  Watson E B and Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64: 295?304.
[58]  Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407?419.
[59]  Wu F Y, Sun D Y, Li H M, Jahn B M and Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187: 143?173.
[60]  Wu F Y, Yang Y H and Xie L W. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105?126.
[61]  Wu Y B, Zheng Y F, Gao S, Jiao W F and Liu Y S. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 101: 308?322.
[62]  Xia Y, Xu X S and Zhu K Y. 2012. Paleoproterozoic S- and A-type granites in southwestern Zhejiang: Magmatism metamorphism and implications for the crustal evolution of the Cathaysia basement. Precambrian Research, 216-219: 177?207.
[63]  Yang J H, Wu F Y, Chung S L, Wilde S A and Chu M F. 2006. A hybrid origin for Qianshan A-type granite, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89: 89?106.
[64]  Yu J H, O’Reilly S Y, Griffin W L, Zhou M F and Wang L J. 2012. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Research, 222-223: 424?449.
[65]  Yu J H, O’Reilly S Y, Wang L J, Griffin W L, Zhang M, Wang R C, Jiang S Y and Shu L S. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research, 164: 1?15.
[66]  Zhao X F, Zhou M F, Li J W, Sun M, Gao J F, Sun W H and Yang J H. 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182: 57?69.
[67]  Zheng J P, Griffin W L, O’Reilly S Y, Zhang M and Pearson N. 2006. Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision. Earth and Planetary Science Letters, 247 (1?2): 130?142.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133