全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原南部谢通门侏罗纪埃达克质岩地球化学特征及其形成机制

, PP. 320-332

Keywords: 地球化学,埃达克质岩,中侏罗世,谢通门,青藏高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

青藏高原南部谢通门地区出露一些中侏罗世的闪长岩,岩石具有类似于埃达克质岩的地球化学特征,如高的SiO2(>59%)、Sr(771~798μg/g)、低HREE和Y(<12μg/g)含量,高Sr/Y(>64)、La/Yb(4.4<(La/Yb)N<19.2)值,较高的MgO(3.02%~3.17%),具有一定Sr正异常和无明显Eu负异常。拉萨地块南部在中侏罗世时期不仅发育有基性和酸性的岩浆作用,而且还发育有斑岩型矿床――雄村斑岩Cu?Au矿床。另外,谢通门闪长岩具有与太平洋西北部BowesRidge地区中基性埃达克质岩十分相似的地球化学特征,而后者形成于中新世俯冲大洋板片断离的构造环境之中。因此研究区中侏罗世谢通门闪长岩很可能为北向俯冲的新特提斯洋板片断离并发生部分熔融的产物。

References

[1]  郎兴海, 陈毓川, 唐菊兴, 李志军, 黄勇, 王程辉, 陈渊, 张丽. 2010. 西藏谢通门县雄村斑岩型铜金矿集区I 号矿体的岩石地球化学特征: 对成矿构造背景的约束.地质与勘探, 46(5): 887-898.
[2]  李才, 王天武, 李惠民, 曾庆高. 2003. 冈底斯地区发现印支期巨斑花岗闪长岩――古冈底斯造山的存在证据. 地质通报, 22(5): 364-366.
[3]  李建峰, 夏斌, 刘立文, 徐力峰, 何观生, 王洪, 张玉泉, 杨之青. 2009. 西藏群让蛇绿岩辉长岩SHRIMP锆石U?Pb年龄及地质意义.大地构造与成矿学, 33(2): 294-298.
[4]  李文霞, 赵志丹, 朱弟成, 董国臣, 周肃, 莫宣学, DePaolo D, Dilek Y. 2012. 西藏雅鲁藏布蛇绿岩形成构造环境的地球化学鉴别. 岩石学报, 28(5): 1663-1673.
[5]  李献华, 刘颖, 涂湘林, 胡光黔, 曾文. 2002. 硅酸盐岩石化学组成的ICP?AES和ICP?MS准确测定:酸溶与碱熔分解样品方法的对比. 地球化学, 31(3): 289-294.
[6]  刘颖, 刘海臣, 李献华. 1996. 用ICP?MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558.
[7]  潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
[8]  曲晓明, 辛洪波, 徐文艺. 2007. 三个锆石U?Pb SHRIMP 年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定. 矿床地质, 26(5):512-518.
[9]  唐菊兴, 李风佶, 李志军, 张丽, 唐晓倩, 邓起, 郎兴海, 黄勇, 姚晓峰, 王友. 2010. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U?Pb、辉钼矿Re?Os年龄的证据. 矿床地质, 29(3): 461-475.
[10]  唐菊兴, 张丽, 黄勇, 王成辉, 李志军, 邓起, 郎兴海, 王友. 2009. 西藏谢通门县雄村铜金矿主要地质体的40Ar/39Ar年龄及地质意义. 矿床地质, 28(6): 759-769.
[11]  韦栋梁, 夏斌, 周国庆, 王冉. 2004. 西藏泽当蛇绿岩壳层火山熔岩的岩石地球化学及成因. 大地构造与成矿学, 28(3): 270-278.
[12]  韦振权, 夏斌, 张玉泉, 王冉, 杨之青, 韦栋梁. 2006. 西藏休古嘎布蛇绿岩中辉绿岩锆石SHRIMP定年及其地质意义.大地构造与成矿学, 30(1): 93-97.
[13]  吴浩若. 1984. 西藏南部白垩纪深海沉积层:冲堆组及其地质意义. 地质科学, 19(1): 26-33.
[14]  肖序常, 李廷栋. 2000. 青藏高原的构造演化与隆升机制. 广州:广东科技出版社: 123-134.
[15]  徐德明, 黄圭成, 雷义均. 2007.西藏西南部休古嘎布蛇绿岩的成因:岩石学和地球化学证据.大地构造与成矿学, 31(4):490-501.
[16]  杨志明, 侯增谦, 夏代祥, 宋玉财, 李政. 2008. 西藏驱龙铜矿西部斑岩与成矿关系的厘定: 对矿床未来勘探方向的重要启示. 矿床地质, 27(1): 28-36.
[17]  钟立峰, 夏斌, 周国庆, 张玉泉, 王冉, 韦栋梁, 杨之青. 2006. 藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年. 地质论评, 52(2): 224-229.
[18]  钟立峰. 2006. 藏南罗布莎蛇绿岩岩石学、地球化学及其构造环境. 广州:中国科学院广州地球化学研究所,博士毕业论文: 109.
[19]  Castillo P R, Janney P E and Solidum R U. 1999. Petrology and geochemistry of Camiguin island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51.
[20]  Castillo P R. 2012. Adakite petrogenesis. Lithos, 134-135:304-316.
[21]  Chu M F, Chung S L, Song B, Liu D, O′Reilly S Y, Pearson N J, Ji J and Wen D J. 2006. Zircon U?Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9):745-748.
[22]  Chung S L, Chu M F, Ji J Q, O′ Reilly S Y, Pearson N J, Liu D Y, Lee T Y and Lo C H. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2):36-48.
[23]  Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D R, Lo C H, Lee T Y, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11):1021-1024.
[24]  Coulon C, Maluski H, Bollinger C and Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3-4): 281-302.
[25]  Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665.
[26]  Dewey J F, Shackleton R M, Chang C and Sun Y. 1988. The tectonic evolution of the Tibetan Plateau. Philosphical Transactions of the Royal Society of London, Series A, 327:379-413.
[27]  Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C and Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432:892-897.
[28]  Macpherson C G, Dreher S T and Thirlwall M F. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243 (3-4):581-593.
[29]  Mahéo G, Guillot S, Blichert?Toft J, Rolland Y and Pecher A. 2002. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth and Planetary Science Letters, 195(1-2): 45-58.
[30]  Malpas J, Zhou M F, Robinson P T and Reynolds P H. 2003. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. Geological Society London Special Publications, 218(1): 191-206.
[31]  Miller C, Thoni M, Frank W, Schuster R, Melcher F, Meisel T and Zanetti A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66(3-4): 155-172.
[32]  Wen D R, Liu D Y, Chung S L, Chu M F, Ji J Q, Zhang Q, Song B, Lee T Y, Yeh M W and Lo C H. 2008b. Zircon SHRIMP U?Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201.
[33]  Xiong X L, Adam J and Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3-4): 339-359.
[34]  Yin J, Xu J, Liu C and Li H. 1988. The Tibetan plateau, Regional stratigraphic context and previous work. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, A327: 5-52.
[35]  Yogodzinsk G M, Lees J M, Churikova T G, Dorendorf F, Woerner G and Volynets O N. 2001, Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409:500-504.
[36]  Zhang K J, Zhang Y X, Tang X C and Xia B. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo?Asian collision. Earth Science Reviews, 114(3-4):236-249.
[37]  Zhu D C, Zhao Z D, Niu Y L, Mo X, Chung S L, Hou Z Q, Wang L Q and Wu F Y. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2):241-255.
[38]  Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Hou Z Q and Mo X. 2012. The origin and pre?Cenozoic evolution of the Tibetan Plateau. Gondwana Research, doi:10.1016/j.gr.2012.02.002
[39]  Zhu D C, Zhao Z D, Pan G T, Lee H Y, Kang Z Q, Liao Z L, Wang L Q, Li G M, Dong G C and Liu B. 2009. Early cretaceous subduction?related adakite?like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt?peridotite interaction? Journal of Asian Earth Sciences, 34(3): 298-309."
[40]  " 常承法, 郑锡澜. 1973. 中国西藏南部珠穆朗玛地区地质构造特征及其青藏高原东西向诸山系形成的探讨. 中国科学(D辑), (2): 190-201.
[41]  董彦辉, 许继峰, 曾庆高, 王强, 毛国政, 李杰. 2006. 存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报, 22(3): 661-668.
[42]  和钟铧, 杨德明, 郑常青, 王天武. 2006. 冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束. 地质论评, 52(1): 100-106.
[43]  黄勇, 丁俊, 唐菊兴, 浪兴海, 陈渊, 张丽. 2011. 西藏雄村铜金矿床I号矿体成矿构造背景与成矿物质来源探讨. 成都理工大学学报(自然科学版), 38: 306-312.
[44]  康志强, 许继峰, 陈建林, 王保弟. 2009. 藏南白垩纪桑日群麻木下组埃达克质岩的地球化学特征及其成因.地球化学, 38(4): 334-344.
[45]  裴树文. 1999. 拉萨地块火山岩系内早-中侏罗世双壳类动物群及其古生物地理. 现代地质, 13(3): 291-298.
[46]  翟庆国, 李才, 李惠民, 王天武. 2005. 西藏冈底斯中部淡色花岗岩锆石U?Pb年龄及其地质意义. 地质通报, 24(4): 349-353.
[47]  张宏飞, 徐旺春, ,郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007. 冈底斯南缘变形花岗岩锆石U?Pb年龄和Hf同位素组成: 新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6):347-353.
[48]  Allègre C J, Courtillot V, Tapponnier P, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Sch?rer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariépy C, G?pel C, Li T, Xiao X, Chang C, Li G, Lin B, Teng J, Wang N, Chen G, Han T, Wang X, Den W, Sheng H, Cao Y, Zhou J, Qiu H, Bao P, Wang S, Wang B, Zhou Y and Xu R. 1984. Structure and evolution of the Himalaya?Tibet orogenic belt. Nature, 307: 17-22.
[49]  Atherton M P and Petford N. 1993. Generation of sodium?rich magmas from newly underplated basaltic crust. Nature, 362: 144-146.
[50]  Girardeau J and Mercier J C C. 1988. Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet): Constraints for mantle structure beneath slow?spreading ridges. Tectonophysics, 147(1-2): 33-58.
[51]  Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust?mantle system. Chemical Geology, 120(3-4):347-359.
[52]  Harris N B W, Xu R H, Lewis C L, Hawkesworth C J and Zhang Y. 1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 327: 263-285.
[53]  Haschke M, Siebel W, Günther A and Scheuber E. 2002. Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°-26°S). Journal of Geophysical Research, 107. doi:10.1029/2001JB 000328.
[54]  Hou Z Q, Gao Y F, Qu X M, Rui Z Y and Mo X X. 2004. Origin of adakitic intrusives generated during mid?Miocene east?west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2):139-155.
[55]  Ji W Q, Wu F Y, Chung S L, Li J X and Liu C Z. 2009. Zircon U?Pb chronology and Hf isotopic constraints on the petrogenesis of Gangdese batholiths, southern Tibet. Chemical Geology, 262(3-4):229-245.
[56]  Kay S M and Mpodozis C. 2001. Central Andean ore deposits linked to evolved shallow seduction systems and thickening crust. GSA Today, 11:4-9.
[57]  Kay S M, Mpodozis C, Tittler A and Cornejo P. 1994. Tertiary magmatic evolution of the Maricunga mineral belt in Chile. International Geology Review, 36(12):1079-1112.
[58]  Kay S M, Mpodpzos C, Ramos V P and Munizaga F. 1991. Magma source variations for midlate Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (22 to 33°S) // Harmon R S and Rapela C W. Andean Magmatism and its Tectonic Settings. GSA Spec. Paper, 265: 113-137.
[59]  Kelemen P B, Hang?j K and Greene A R. 2003. One view of the geochemistry of subduction?related magmatic arcs, with an emphasis on primitive andesite and lower crust // Rudnick P L. The Crust. Vol. 3, Treatise on Geochemistry. Oxford, UK, Elsevier?Pergamon: 593-659.
[60]  Lee H Y, Chung S L, Ji J Q, Qian Q, Gallet S, Lo C H, Lee T Y and Zhang Q. 2012. Geochemical and Sr?Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences, 53:96-114.
[61]  Mo X X, Hou Z Q, Niu Y L, Dong G C, Qu X M, Zhao Z D and Yang Z M. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2):225-242.
[62]  Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4):49-68.
[63]  Peacock S M, Rushmer T and Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1-2):227-244.
[64]  Pearce J A and Deng W M. 1988. The ophiolites of the Tibet Geotraverse, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London A, 327: 215-238.
[65]  Pearce J A and Mei H. 1988. Volcanic rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud. Philosophical Transactions of the Royal Society of London A, 327, 169-201.
[66]  Richards J P and Kerrich B. 2007. Adakite?like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4):537-576.
[67]  Richards J P. 2009. Postsubduction porphyry Cu?Au and epithermal Au deposits: Products of remelting of subduction?modified lithosphere. Geology, 37(3):247-250.
[68]  Sun S S and McDonough W F. 1989. Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes. // Saunders AD (eds). Magmatism in ocean Basins. Geological Society Publication, 42: 313-345.
[69]  Wanke M, Portnyagin M, Hoernle K, Werner R, Hauff F, van den Bogaard P and Garbe?Schonberg D. 2012. Bowers Ridge (Bering Sea): An Oligocene?Early Miocene island arc. Geology, 40(8):687-690.
[70]  Wen D R, Chung S L, Song B, Iizuka Y, Yang H J, Ji J Q, Liu D Y and Gallet S. 2008a. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 105(1-2): 1-11.
[71]  Xu J F, Shinjo R, Defant M J, Wang Q and Rapp R T. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30(12):1111-1114.
[72]  Xu R H, Scharer U and Allègre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. Journal of Geology, 93(1): 41-57.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133