Castillo P R, Janney P E and Solidum R U. 1999. Petrology and geochemistry of Camiguin island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51.
[20]
Castillo P R. 2012. Adakite petrogenesis. Lithos, 134-135:304-316.
[21]
Chu M F, Chung S L, Song B, Liu D, O′Reilly S Y, Pearson N J, Ji J and Wen D J. 2006. Zircon U?Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9):745-748.
[22]
Chung S L, Chu M F, Ji J Q, O′ Reilly S Y, Pearson N J, Liu D Y, Lee T Y and Lo C H. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2):36-48.
[23]
Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D R, Lo C H, Lee T Y, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11):1021-1024.
[24]
Coulon C, Maluski H, Bollinger C and Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3-4): 281-302.
[25]
Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665.
[26]
Dewey J F, Shackleton R M, Chang C and Sun Y. 1988. The tectonic evolution of the Tibetan Plateau. Philosphical Transactions of the Royal Society of London, Series A, 327:379-413.
[27]
Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C and Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432:892-897.
[28]
Macpherson C G, Dreher S T and Thirlwall M F. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243 (3-4):581-593.
[29]
Mahéo G, Guillot S, Blichert?Toft J, Rolland Y and Pecher A. 2002. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth and Planetary Science Letters, 195(1-2): 45-58.
[30]
Malpas J, Zhou M F, Robinson P T and Reynolds P H. 2003. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. Geological Society London Special Publications, 218(1): 191-206.
[31]
Miller C, Thoni M, Frank W, Schuster R, Melcher F, Meisel T and Zanetti A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66(3-4): 155-172.
[32]
Wen D R, Liu D Y, Chung S L, Chu M F, Ji J Q, Zhang Q, Song B, Lee T Y, Yeh M W and Lo C H. 2008b. Zircon SHRIMP U?Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201.
[33]
Xiong X L, Adam J and Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3-4): 339-359.
[34]
Yin J, Xu J, Liu C and Li H. 1988. The Tibetan plateau, Regional stratigraphic context and previous work. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, A327: 5-52.
[35]
Yogodzinsk G M, Lees J M, Churikova T G, Dorendorf F, Woerner G and Volynets O N. 2001, Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409:500-504.
[36]
Zhang K J, Zhang Y X, Tang X C and Xia B. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo?Asian collision. Earth Science Reviews, 114(3-4):236-249.
[37]
Zhu D C, Zhao Z D, Niu Y L, Mo X, Chung S L, Hou Z Q, Wang L Q and Wu F Y. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2):241-255.
[38]
Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Hou Z Q and Mo X. 2012. The origin and pre?Cenozoic evolution of the Tibetan Plateau. Gondwana Research, doi:10.1016/j.gr.2012.02.002
[39]
Zhu D C, Zhao Z D, Pan G T, Lee H Y, Kang Z Q, Liao Z L, Wang L Q, Li G M, Dong G C and Liu B. 2009. Early cretaceous subduction?related adakite?like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt?peridotite interaction? Journal of Asian Earth Sciences, 34(3): 298-309."
Allègre C J, Courtillot V, Tapponnier P, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Sch?rer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariépy C, G?pel C, Li T, Xiao X, Chang C, Li G, Lin B, Teng J, Wang N, Chen G, Han T, Wang X, Den W, Sheng H, Cao Y, Zhou J, Qiu H, Bao P, Wang S, Wang B, Zhou Y and Xu R. 1984. Structure and evolution of the Himalaya?Tibet orogenic belt. Nature, 307: 17-22.
[49]
Atherton M P and Petford N. 1993. Generation of sodium?rich magmas from newly underplated basaltic crust. Nature, 362: 144-146.
[50]
Girardeau J and Mercier J C C. 1988. Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet): Constraints for mantle structure beneath slow?spreading ridges. Tectonophysics, 147(1-2): 33-58.
[51]
Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust?mantle system. Chemical Geology, 120(3-4):347-359.
[52]
Harris N B W, Xu R H, Lewis C L, Hawkesworth C J and Zhang Y. 1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 327: 263-285.
[53]
Haschke M, Siebel W, Günther A and Scheuber E. 2002. Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°-26°S). Journal of Geophysical Research, 107. doi:10.1029/2001JB 000328.
[54]
Hou Z Q, Gao Y F, Qu X M, Rui Z Y and Mo X X. 2004. Origin of adakitic intrusives generated during mid?Miocene east?west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2):139-155.
[55]
Ji W Q, Wu F Y, Chung S L, Li J X and Liu C Z. 2009. Zircon U?Pb chronology and Hf isotopic constraints on the petrogenesis of Gangdese batholiths, southern Tibet. Chemical Geology, 262(3-4):229-245.
[56]
Kay S M and Mpodozis C. 2001. Central Andean ore deposits linked to evolved shallow seduction systems and thickening crust. GSA Today, 11:4-9.
[57]
Kay S M, Mpodozis C, Tittler A and Cornejo P. 1994. Tertiary magmatic evolution of the Maricunga mineral belt in Chile. International Geology Review, 36(12):1079-1112.
[58]
Kay S M, Mpodpzos C, Ramos V P and Munizaga F. 1991. Magma source variations for midlate Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (22 to 33°S) // Harmon R S and Rapela C W. Andean Magmatism and its Tectonic Settings. GSA Spec. Paper, 265: 113-137.
[59]
Kelemen P B, Hang?j K and Greene A R. 2003. One view of the geochemistry of subduction?related magmatic arcs, with an emphasis on primitive andesite and lower crust // Rudnick P L. The Crust. Vol. 3, Treatise on Geochemistry. Oxford, UK, Elsevier?Pergamon: 593-659.
[60]
Lee H Y, Chung S L, Ji J Q, Qian Q, Gallet S, Lo C H, Lee T Y and Zhang Q. 2012. Geochemical and Sr?Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences, 53:96-114.
[61]
Mo X X, Hou Z Q, Niu Y L, Dong G C, Qu X M, Zhao Z D and Yang Z M. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2):225-242.
[62]
Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4):49-68.
[63]
Peacock S M, Rushmer T and Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1-2):227-244.
[64]
Pearce J A and Deng W M. 1988. The ophiolites of the Tibet Geotraverse, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London A, 327: 215-238.
[65]
Pearce J A and Mei H. 1988. Volcanic rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud. Philosophical Transactions of the Royal Society of London A, 327, 169-201.
[66]
Richards J P and Kerrich B. 2007. Adakite?like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4):537-576.
[67]
Richards J P. 2009. Postsubduction porphyry Cu?Au and epithermal Au deposits: Products of remelting of subduction?modified lithosphere. Geology, 37(3):247-250.
[68]
Sun S S and McDonough W F. 1989. Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes. // Saunders AD (eds). Magmatism in ocean Basins. Geological Society Publication, 42: 313-345.
[69]
Wanke M, Portnyagin M, Hoernle K, Werner R, Hauff F, van den Bogaard P and Garbe?Schonberg D. 2012. Bowers Ridge (Bering Sea): An Oligocene?Early Miocene island arc. Geology, 40(8):687-690.
[70]
Wen D R, Chung S L, Song B, Iizuka Y, Yang H J, Ji J Q, Liu D Y and Gallet S. 2008a. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 105(1-2): 1-11.
[71]
Xu J F, Shinjo R, Defant M J, Wang Q and Rapp R T. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30(12):1111-1114.
[72]
Xu R H, Scharer U and Allègre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. Journal of Geology, 93(1): 41-57.