全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

云南白锡腊碱性钛铁质辉长岩类与铁氧化物铜金型矿床关系研究

, PP. 242-261

Keywords: 云南,白锡腊矿段,碱性钛铁质辉长岩,铁氧化物铜金型(IOCG)矿床,板内洋岛玄武岩,富铁地幔源区

Full-Text   Cite this paper   Add to My Lib

Abstract:

云南东川白锡腊铁铜矿段深部碱性钛铁质辉长岩类具有明显的岩相学分带,最新发现的铁氧化物铜金型(IOCG)矿体受碱性钛铁质辉长岩类与隐爆角砾岩相带控制。地球化学研究显示本区碱性钛铁质辉长岩-碱性钛铁质闪长岩具有贫硅、富碱、高磷、富钛铁特征,富集大离子亲石元素(LILE)、稀土元素(REE)及高场强元素(HFSE),与洋岛玄武岩(OIB)类特点一致,具有富铁地幔源区特征。锆石SHRIMPU?Pb年龄揭示它们形成时代为1067±20Ma~1047±15Ma,揭示了本区碱性钛铁质辉长岩类和铁氧化物铜金型矿床形成时代为中元古代末期,属于格林威尔同造山期形成的产物。推测这种碱性钛铁质辉长岩类的岩浆源区属板内洋岛玄武岩(OIB),地幔流体交代作用导致上涌侵位,这种富铁地幔源区为区域上大规模铁铜金属超量聚集,提供了良好的成矿动力学条件和丰富成矿物质,不但有利于大型-超大型铁氧化物铜金型矿床形成,而且有利于钛铁矿和铜硫化物(铂钯)富集成矿。

References

[1]  陈永清, 黄静宁, Xiaoming Zhai, 赵彬彬. 2009. 多尺度地球化学勘查聚焦找矿靶区――以滇东Pt 地球化学省勘查研究为例. 中国科学(D辑), 39(10): 1456-1465.
[2]  方维萱,柳玉龙,郭茂华,包昌良. 2009a. 云南东川滥泥坪铁氧化物铜金型(IOCG)矿床发现与找矿方向. 矿物岩石地球化学通报. 28(增刊):199.
[3]  方维萱 柳玉龙 张守林 郭茂华. 2009b. 全球铁氧化物铜金型(IOCG)矿床的三类大陆动力学背景与成矿模式. 西北大学学报(自然科学版),39(03):404-413.
[4]  方维萱,杨新雨,柳玉龙,郭茂华,包昌良,曾宝成. 2012.岩相学填图技术在云南东川白锡腊铁铜矿段深部应用试验与找矿预测. 矿物学报,32(1):101-114.
[5]  耿元生, 杨崇辉, 杜利林,王新社, 任留东, 周喜文. 2007. 天宝山组形成时代和形成环境――锆石SHRIMP U?Pb 年龄和地球化学证据. 地质论评, 53(4): 556-563.
[6]  耿元生,杨崇辉,王新社. 2008. 扬子地台西缘变质基底演化. 北京:地质出版社: 1-202.
[7]  龚琳,何毅特,陈天佑. 1996. 云南东川元古宙裂谷型铜矿. 北京:冶金工业出版社: 1-252.
[8]  寇彩化,张招崇,侯通,廖宝丽,李宏博. 2011. 滇西剑川OIB 型苦橄玢岩: 俯冲板块断离的产物? 岩石学报,27( 9) : 2679-2693.
[9]  李复汉,覃嘉铭,申玉莲,王福星,周国富,潘杏南,李兴振.1988. 康滇地区的前震旦系. 重庆:重庆出版社: 1-375.
[10]  李江海, 穆剑. 1999. 我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约. 地质科学, 34 (3) : 259-272.
[11]  Brooks C K and Nielsen T F D. 1978. Early stages in the differentiation of the Skaergaard magma as revealed by a closely related suite of dike rocks. Lithos, 11: 1-14.
[12]  Brooks C K and Nielsen T F D. 1982. The East Greenland continental margin: A transition between oceanic and continental magmatism. Geological Society of London Journal, 139: 265-275.
[13]  Bryan S E and Ernst R E. 2008. Revised definition of Large Igneous Provinces (LIPs). Earth?Science Reviews,86:175-202.
[14]  Condie K C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104: 1-37.
[15]  Fornari D J, Perfit M R, Malahoff A and Embley R. 1983. Geochemical studies of abyssal lavas recorded by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 1. Major element variations in natural glasses and spatial distribution of lavas. Journal of Geophysical Research, 88: 10519-10529.
[16]  Gibson S A. 2002. Major element heterogeneity in Archean to Recent mantle plume starting heads. Earth and Planetary Science Letters, 195: 59-74.
[17]  Hanski E J and Smolkin V F. 1995. Iron? and LREE?enriched mantle source for early Proterozoic intraplate magmatism as exemplified by the Pechenga ferropicrites, Kola Peninsula, Russia. Lithos, 34: 107-125.
[18]  Larsen L M, Pedersen A K, Sundvoll B and Frei R. 2003. Alkali picrites formed by melting of old metasomatized lithospheric mantle: Manitdlat Member, Vaigat Formation, Palaeocene of West Greenland. Journal of Petrology, 44(1): 3-38.
[19]  Leybourne M L, Wangoner N V and Ayres L. 1999. Partial melting of a refracory subducted slab in a paleoproterozoic island arc: Implications for global chemical cycles. Geology, 27 (8) : 731-734.
[20]  Li Z X, L i X H, Zhou H W and Kinny P D. 2002. Grenville?aged continental collision in South China: New SHRIMP U?Pb zircon results and implications for Rodinia configuration. Geology, 30 (2) : 163 - 166.
[21]  Michael P F and James M Mc Lelland. 1995. Proterozoic low?Ti iron?oxide deposits in New York and New Jersey: Relation to Fe?oxide (Cu?U?Au?rare earth element) deposits and tectonic implications. Geology, 23(7): 665-668.
[22]  Niu Y L. 2008. The origin of alkaline lavas. Science, 320: 883-884.
[23]  Pearce T H, Gorman B E and Birkett T C. 1977. The relationship between major element geochemistry and tectonic environment of basic and intermediate volcanic rocks. Earth and Planetary Science Letters, 36: 121-132.
[24]  Pearce J A and Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69: 33-47.
[25]  Zindler A and Hart S R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Science, 14: 493-571.
[26]  陈和生. 1998. 东川辉长岩型铜矿地质特征及其找矿意义. 云南地质,17(1):75-80.
[27]  姜勇彪, 张世红, 吴怀春, 韩以贵. 2006. 华南地块西南缘格林威尔期区域构造解析. 大地构造与成矿学, 30(2): 127-135.
[28]  陆松年,李怀坤,陈志宏,郝国杰,周红英,郭进京,牛广华,相镇群. 2003. 秦岭中-新元古代地质演化及对RODINIA超级大陆事件的响应. 北京:地质出版社: 1-181.
[29]  陆松年,李怀坤,相振群. 2010. 中国中元古代同位素地质年代学研究进展述评. 中国地质,37(4):1002-1013.
[30]  牛耀龄. 2010. 板内洋岛玄武岩(OIB)成岩的一些基本概念和存在问题. 科学通报,55(2):103-114.
[31]  裴先治. 1997. 东秦岭商丹构造带的组成与构造演化. 西安:西安地图出版社: 1-177.
[32]  邱华宁, 孙大中, 朱炳泉, 常向阳. 1998. 东川汤丹铜矿床石英真空击碎及其粉末加热40Ar?39Ar年龄谱的含义. 地球化学, 27 (4) : 335- 343.
[33]  邱华宁, Wijbrans J R, 李献华, 朱炳泉, 朱崇林, 曾保成. 2001. “东川式”层状铜矿40Ar?39Ar 成矿年龄测定. 矿物岩石地球化学通报, 20(4): 358-359.
[34]  邱华宁, 朱炳泉, 孙大中. 2000. 东川铜矿硅质角砾40Ar?39Ar定年探讨. 地球化学, 29(1) : 21-27.
[35]  沈权. 1993. 昆阳群40Ar?39Ar法测年探讨晋宁运动和澄江运动的时限. 云南地质,12(3):317-323.
[36]  孙志明,尹福光,关俊雷,刘建辉,李军敏,耿全如,王立全. 2009. 云南东川地区昆阳群黑山组凝灰岩锆石SHRIMP U?Pb年龄及其地层学意义. 地质通报, 28(7): 806-900.
[37]  吴根耀. 2000. 华南的格林威尔造山带及其坍塌:在罗迪尼亚超大陆演化中的意义. 大地构造与成矿学, 24(2): 112-123.
[38]  吴根耀, 吴浩若, 钟大赉, 邝国敦, 季建清. 2000. 滇桂交界处古特提斯的洋岛和岛弧火山岩. 现代地质, 14(4): 393-400.
[39]  吴健民,刘肇昌,?功聚,黄永平. 1998. 扬子地块西缘铜矿床地质. 武汉:中国地质大学出版社: 1-268.
[40]  熊家墉. 1993. 云南东部中-新元古代地层界线的厘定与对比. 云南地质,12(1):37-43.
[41]  徐义刚, 何斌, 黄小龙, 罗震宇, 朱丹, 马金龙, 邵辉. 2007. 地幔柱大辩论及如何验证地幔柱假说. 地学前缘, 14(2): 1-9.
[42]  杨崇辉,耿元生,杜利林,任留东,王新社,周喜文,杨铸生. 2009. 扬子地块西缘Grenville 期花岗岩的厘定及其地质意义. 中国地质,36(3):647-657.
[43]  杨应选,仇定茂,阙梅英,张立生,万捷.1988. 西昌-滇中前寒武系层控铜矿. 重庆出版社:1-374.
[44]  张传恒, 高林志, 武振杰, 史晓颖, 阎全人, 李大建. 2007. 滇中昆阳群凝灰岩锆石SHRIMP U?Pb年龄: 华南格林威尔期造山的证据. 科学通报,52(7):818-824.
[45]  张学诚,李天福. 1994. 康滇裂谷带火山岩活动及其碱性(钠质)火山岩系列的岩石化学特征. 西南矿产地质, 8(3-4):57-71.
[46]  郑永飞, 张少兵. 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报,52(1):1-10.
[47]  朱华平,范文玉,周邦国,,王生伟,罗茂金,廖震文,郭 阳. 2011. 论东川地区前震旦系地层层序:来自锆石SHRIMP及LA?ICP?MS测年的证据. 高校地质学报, 17(3): 452-461.
[48]  Bloomer S H, Natland J H and Fisher R L. 1989. Mineral relationships in gabbroic rocks from fracture zone of Indian Ocean ridges: Evidence for extensive fractionation, parental diversity and boundary layer recrystallization//Saunders D D and Norry M T. Magmatism in the Ocean Basins. Geological Society of London Special Publication, 42: 107-124.
[49]  Le Roex A P, Dick H J B, Reid A M and Erlank A J. 1982. Ferrobasalts from the Spiess Ridge segment of the Southwest Indian Ridge. Earth and Planetary Science Letters, 60: 437-451.
[50]  Liu J S. 1996. Superposing?reworking metallogenesis of Jiningian mafic volcanic?intrusive complex in Dongchuan copperfield, Yunnan, China. Transactions of NFsoc, 6(1): 1-5.
[51]  Ludden J N, Thompson G, Bryan W B, Frey F A. 1980. The origin of lavas from the Ninetyeast Ridge, Eastern Indian Ocean: An evaluation of fractional crystallization models. Journal of Geophysical Research, 85: 4405-4420.
[52]  Mahotkin I L, Gibson S A, Thompson R N, Zhuravlev D Z and Zherdev P U. 2000. Late Devonian diamondierous kimberlite and alkaline pricrite (proto?kimberlite?) magmatism in the Arkhangelsk region, NW Russia. Journal of Petrology, 41(2): 201-227.
[53]  Michael P F and Grauch V J S. 1995. Low?Ti iron oxide Cu?U?Au?REE deposits // Preliminary compilation of descriptive geoenvironmental mineral deposit models. http://pubs.usgs.gov/of/1995/0831/report.pdf
[54]  Pilet S, Baker M B and Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320: 916-919.
[55]  Rajamani V, Shirey S B and Hanson G N. 1989. Fe?rich Archean tholeiites derived from melt?enriched mantle sources: Evidence from the Kolar Schist belt, South India. Journal of Geology, 97: 487-501.
[56]  Rehfeldt T, Dorrit E J, Richard W C and Stephen F F. 2007. Fe?rich dunite xenoliths from South African Kimberlites: Cumulates from Karoo Flood Basalts. Journal of Petrology, 48(7): 1387-1409.
[57]  Shoshana B and Goldstein Francis D. 2008. The petrogenesis and mantle source of Archaean ferropicrites from the Western Superior Province, Ontario, Canada. Journal of Petrology, 49(10): 1729-1753.
[58]  Sinton J M, D S Wilson, D M Christie, R N Hey, and J R Delaney. 1983. Petrologic consequences of rift propagation on oceanic spreading ridges. Earth and Planetary Science Letters 62:193-207.
[59]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes // Saunders A D and Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 42: 313-345.
[60]  Tuff J, Takahashi E and Gibson S A. 2005. Experimental constraints on the role garnet pyroxenite in the genesis of high?Fe mantle plume derived melt. Journal of Petrology, 46: 2023-2058.
[61]  Weaver B L. 1991. The origin of ocean island end?member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104: 381-397.
[62]  Wiebe R A. 1979. Fractionation and liquid immiscibility in an anorthositic pluton of the Nain Complex, Labrador. Journal of Petrology, 20: 239-269.
[63]  Wooden J L, Czamanske G K, Fedorenko T A, Arndt N T, Chauvel C, Bouse R M, King B W, Knight R J, Siems D F. 1993. Isotopic and trace element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberian. Geochim Cosmochim Acta, 57: 3677-3704.
[64]  Yaxley G M, Green D H and Kamenetsky V. 1998. Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology, 39: 1917-1930.
[65]  Zhang Z C, Mao J W, Wang F S, Hao Y L and Mahoney J J. 2005. Mantle plume activity and melting conditions: Evidence from olivines in picritic?komatiitic rocks from the Emeishan Large Igneous Province, southwestern China. Episodes, 28(3):171-176.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133