全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水对名义无水矿物变形的影响

, PP. 138-163

Keywords: ,名义无水矿物,水致弱化,流变学,构造地质学,地球动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

在固体地球中,水虽微量,但对众多地质过程(例如,岩石部分熔融与火山喷发、地震活动等)和岩石的物理化学性质(例如,电导率、滞弹性、地震波性质、相变动力学等)影响重大。更为重要的是,水能通过影响矿物的变形机制来控制岩石的流变强度,进而制约着地球动力学的过程。名义无水矿物(NAMs:Nominalanhydrousminerals)即为分子式中不含氢的矿物,其晶格的容水量远小于正常含水矿物(如,角闪石,蛇纹石等)的容水量,但由于NAMs在固体地球中体积比例甚大,仅上地幔的橄榄石中所能溶解的水可能比全部地表水还多。因此了解水对NAMs(尤其是分别作为地壳和上地幔主要组成矿物的石英和橄榄石)变形的影响对于精确地构建岩石圈强度剖面和深刻理解构造地质学与地球动力学过程至关重要。本文将系统地回顾水对NAMs变形的影响,首先通过回顾水在固体地球内部的存在形式提出了NAMs是固体地球中的重要水库,接着阐述了NAMs中水的存在形式、溶解机制、溶解度影响因素及扩散动力学,最后着重论证了水致弱化在石英和富镁石榴石中最强,然后依次是单斜辉石、长石、橄榄石,瓦德利石和林伍?石。

References

[1]  嵇少丞. 1989. 水致弱化:一种重要的构造地质作用――以石英为例. 国外地质, (2): 8-14.
[2]  Bai Q and Kohlstedt D L. 1992. Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature, 357: 672-674.
[3]  Bai Q and Kohlstedt D L. 1993. Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Phys Chem Mineral, 19: 4607-471.
[4]  Bai Q, Mackwell S and Kohlstedt D. 1991. High?temperature creep of olivine single crystals 1. Mechanical results for buffered samples. J Geophys Res, 96(B2): 2441-2463.
[5]  Bell D R. 1993. Hydroxyl in mantle minerals. PhD Dissertation, California Institute of Technology, Pasadena, California.
[6]  Bell D R and Rossman G R. 1992a. The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contrib Mineral Petrol, 111: 161-178.
[7]  Bell D R and Rossman G R. 1992b. Water in Earth′s mantle: The role of nominally anhydrous minerals. Science, 255: 1391-1397.
[8]  Bell D R, Rossman G R and Moore R O. 2004. Abundance and partitioning of OH in a high?pressure magmatic system megacrysts from the Monastery Kimberlite, South Africa. J Petrol, 45: 1539-1564.
[9]  Blacic J D. 1972. Effects of water on the experimental deformation of olivine // Heard H C, Borg I Y, Carter N L and Raleigh C B. Flow and Fracture of Rocks. AGU: 109-115.
[10]  Blacic J D. 1975. Plastic?deformation mechanisms of quartz: The effect of water. Tectonophysics, 27: 271-294.
[11]  Blacic J D and Christie J M. 1984. Plasticity and hydrolytic weakening of quartz single crystals. J Geophys Res, 89: 4223-4239.
[12]  Boland J N and Tullis T E. 1986. Deformation behavior of wet and dry clinopyroxenite in the brittle to ductile transition region. // Hobbs B E and Heard H C. Mineral and Rock Deformation: Laboratory Studies. AGU, 35-50.
[13]  Bolfan?Casanova N. 2005. Water in the Earth′s mantle. Mineral Mag, 69: 229-257.
[14]  Bolfan?Casanova N, Keppler H and Rubie D C. 2000. Water partitioning between nominally anhydrous minerals in the MgO?SiO2?H2O system up to 24 GPa: Implications for the distribution of water in the Earth′s mantle. Earth Planet Sci Lett, 182: 209-221.
[15]  Bolfan?Casanova N, Keppler H and Rubie D C. 2003. Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophys Res Lett, 30, doi: 10. 1029/2003GL017182.
[16]  Bolfan?Casanova N, Mackwell S J, Keppler H, McCammon C and Rubie D C. 2002. Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth′s lower mantle. Geophys Res Lett, 29: 1029-1032.
[17]  Borch R S and Green II H W. 1989. Deformation of peridotite at high pressure in a new molten cell: Comparision of traditional and homologous temperature treatments. Phys Earth Planet Int, 55(3-4): 269-276.
[18]  Bromiley G D, Keppler H, McCammon C, Bromiley F A and Jacobsen S B. 2004. Hydrogen solubility and speciation in natural, gem quality chromian diopside. Am Mineral, 89: 941-949.
[19]  Bürgmann R and Dresen G. 2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci, 36: 531-567.
[20]  Bystricky M and Mackwell S. 2001. Creep of dry clinopyroxene aggregates. J Geophys Res, 106: 13443-13454.
[21]  Carter N L and Avé Lallemant H G. 1970. High temperature flow of dunite and peridotite. Geol Soc Am Bull, 81: 2181-2202.
[22]  Carter N L, Kronenberg A K, Ross J V and Wiltchko D V. 1990. Control of fluids on deformation of rocks // Knipe R J and Rutter E H. Deformation Mechanisms, Rheology and Tectonics. J Geol Soc London Spec Publ, 54: 1-13.
[23]  Chen J, Inoue T, Weidner D J, Wu Y and Vaughan M T. 1998. Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite. Geophys Res Lett, 25: 575-578.
[24]  Chen S, Hiraga T and Kohlstedt D L. 2006. Water weakening of clinopyroxene in the dislocation creep regime. J Geophys Res, 111, B08203, doi: 10.1029/2005JB003885.
[25]  Chopra P N and Paterson M S. 1981. The experimental deformation of dunite. Tectonophysics, 78: 453-473.
[26]  Chopra P N and Paterson M S. 1984. The role of water in the deformation of dunite. J Geophys Res, 89: 7861-7876.
[27]  Cordier P, Weil J A, Howarth D F and Doukhan J?C. 1994. Influence of the (4H)Si defect on dislocation motion in crystalline quartz. Eur J Min, 6: 17-22.
[28]  Dai L and Karato S. 2009. Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet Sci Lett, 287: 277-283.
[29]  Dennis P F. 1984. Oxygen self?diffusion in quartz under hydrothermal conditions. J Geophys Res, 89: 4047-4057.
[30]  Dimanov A and Dresen G. 2005. Rheology of synthetic anorthite?diopside aggregates: Implications for ductile shear zones. J Geophys Res, 110, B07203, doi: 10.1029/2004JB003431.
[31]  Dimanov A, Dresen G, Xiao X and Wirth R. 1999. Grain boundary diffusion creep of synthetic anorthite aggregates: The effect of water. J Geophys Res, 104(B5): 10483-10497.
[32]  Dobson P F, Skogby H and Rossman G R. 1995. Water in boninite and coexisting orthopyroxene: Concentration and partitioning. Contrib Mineral Petrol, 118: 414-419.
[33]  Doukhan J?C and Paterson M S. 1986. Solubility of water in quartz. Bull Mineral, 109: 193-198.
[34]  Doukhan J?C and Trépied L. 1985. Plastic deformation of quartz single crystals. Bull Mineral, 108: 97-123.
[35]  Farver J R and Yund R A. 1991. Oxygen diffusion in quartz: dependence on temperature and water fugacity. Chem Geol, 90: 55-70.
[36]  Faul U H and Jackson I. 2007. Diffusion creep of dry, melt?free olivine. J Geophys Res, 112, B04204, doi:10.1029/2006JB004586.
[37]  Gleason G C and Tullis J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247: 1-23.
[38]  Griggs D T. 1967. Hydrolytic weakening of quartz and other silicates. Geophys J Roy Astr S, 14: 19-31.
[39]  Hier?Majumder S, Anderson I M and Kohlstedt D L. 2005a. Influence of protons on Fe?Mg interdiffusion in olivine. J Geophys Res, 110: 10.1029/2004JB003292.
[40]  Hier?Majumder S, Mei S and Kohlstedt D L. 2005b. Water weakening of clinopyroxenite in diffusion creep. J Geophys Res, 110(1-12): B02202, doi: 10.1029/2004JB003292.
[41]  Higo Y, Inoue T, Irifune T and Yurimoto H. 2001. Effect of water on the spinel?postspinel transformation in Mg?SiO4. Geophys Res Lett, 28: 3505-3508.
[42]  Hirth G and Kohlstedt D L. 1995. Experimental constraints on the dynamics of partially molten upper mantle 1. Deformation in the diffusion creep regime. J Geophys Res, 100(B2): 1981-2001.
[43]  Hirth G and Kohlstedt D L. 1996. Water in the oceanic upper mantle: Implication for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett, 144: 93-108.
[44]  Hirth G and Kohlstedt D L. 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists // Eiler J. Inside the Subduction Factory. Geophysical Monograph, 138: 83-105.
[45]  Hirth G, Teyssier C and Denlop D J. 2001. An evaluation of quartzite flow law based comparisons between experimentally and naturally deformed rocks. Int J Earth Sci, 90: 77-87.
[46]  Holloway J R. 1973. The system pargasite?H2O?CO2: A model for melting of a hydrous mineral with a mixed?volatile fluid, I: Experimental results to 8 kbar. Geochim Cosmochim Acta, 37: 651-666.
[47]  Karato S. 2006a. Influence of hydrogen?related defects on the electrical conductivity and plastic deformation mantle minerals: a critical review // Jacobsen S D and van der Lee S. Earth′s Deep Water Cycle. AGU: 113-129.
[48]  Karato S. 2006b. Remote sensing of hydrogen in Earth′s mantle. Rev Mineral Geochem, 62: 343-375.
[49]  Karato S. 2008. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge Univ Press: 463
[50]  Karato S, Paterson M and Fitz Gerald J D. 1986. Rheology of synthetic olivine aggregates: Influence of grain size and water. J Geophys Res, 91: 8151-8176.
[51]  Karato S and Weidner D J. 2008. Laboratory studies of the rheological properties of minerals under deep?mantle conditions. Elements, 4: 191-196.
[52]  Kavner A. 2003. Elasticity and strength of hydrous ringwoodite at high pressure. Earth Planet Sci Lett, 214: 645-654.
[53]  Kavner A and Duffy T S. 2001. Strength and elasticity of ringwoodite at upper mantle pressures. Geophys Res Lett, 28(14): 2691-2694.
[54]  Kekulawala K R S S, Paterson M S and Boland J N. 1978. Hydrolytic weakening in quartz. Tectonophysics, 46: T1-T6.
[55]  Kekulawala K R S S, Paterson M S and Boland J N. 1981. An experimental study of the role of water in quartz deformation // Carter N L, Friedman M, Logan J M and Stearns D W. Mechanical Behavior of Crustal Rocks: the Handin Volume. AGU: 49-60.
[56]  Kirby S H and Kronenberg A K. 1984. Hydrolytic weakening of quartz: Uptake of molecular water and the role of microfracturing. EOS Trans AGU, 65: 277.
[57]  Kitamura M, Kondoh S, Morimoto N. Miller G H, Rossman G R and Putnis A. 1987. Planar OH?bearing defects in mantle olivine. Nature, 328: 143-145.
[58]  Koch P S, Christie J M and George R P. 1980. Flow law for "wet" quartzite in the α?quartz field (abstract). EOS, Trans AGU, 61: 376.
[59]  Kohlstedt D L, Evcans B and Mackwell S J. 1995. Strength of lithosphere: Constraints imposed by laboratory measurements. J Geophys Res, 100: 17587-17602.
[60]  Kohlstedt D L, Keppler H and Rubie D C. 1996. Solubility of water in the α, β, γ phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol, 123: 345-357.
[61]  Kohlstedt D L and Mackwell S J. 1998. Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem, 207: 147-162.
[62]  Kronenberg A K. 1994. Hydrogen speciation and chemical weakening of quartz. Rev Mineral, 29: 123-176.
[63]  Kronenberg A K, Kirby S H, Aines R D and Rossman G R. 1986. Solubility and diffusional uptake of hydrogen in quartz at high water pressures: Implications for hydrolytic weakening. J Geophys Res, 91: 12723-12744.
[64]  Kronenberg A K and Tullis J. 1984. Flow strengths of quartz aggregates: Grain size and pressure effects due to hydrolytic weakening. J Geophys Res, 89: 4281-4297.
[65]  Kubo T, Ohtani E, Kato T, Shinmei T and Fujino K. 1998. Effects of water on the α?β transformation kinetics in San Carlos olivine. Science, 281: 85-87.
[66]  Kushiro I. 1972. Effect of water on the composition of magmas formed at high pressures. J Petrol, 13: 311-334.
[67]  Lager G A, Armbruster T and Faber J. 1987. Neutron and X?ray diffraction study of hydrogarnet Ca3Al2(O4H4)3. Am Mineral, 72: 756-765.
[68]  Libowitzky E and Beran A. 1995. OH defects in forsterite. Phys Chem Mineral, 22: 387-392.
[69]  Linker M F and Kirby S H. 1981. Anisotropy in the rheology of hydrolytically weakened quartz crystals // Carter N L, Friedman M, Logan J M and Stearns D W. Mechanical Behavior of Crustal Rocks. AGU: 29-48.
[70]  Linker M F, Kirby S H, Ord A and Christie J M. 1984. Effects of compression direction on the plasticity and rheology of hydrolytically weakened synthetic quartz crystals at atmospheric pressure. J Geophys Res, 89: 4241-4255.
[71]  Litasov K and Ohtani E. 2003. Stability of various hydrous phases in CMAS pyrolite?H2O system up to 25 GPa. Physics and Chemistry of Minerals, 20: 147-156.
[72]  Lu R and Keppler H. 1997. Water solubility in pyrope to 100 kbar. Contrib Mineral Petrol, 129: 35-42.
[73]  Mackwell S J. 1994. Hydrogen diffusion and solubility in olivine and orthopyroxene. Terra Abstract, 6: 32.
[74]  Mackwell S J and Kohlstedt D L. 1990. Diffusion of hydrogen in olivine: Implications for water in the mantle. J Geophys Res, 95: 5079-5088.
[75]  Meade C and Jeahloz R. 1991. Deep?focus earthquakes and recycling of water into the Earth′s mantle. Science, 252: 68-72.
[76]  Meade C, Reffner J A and Ito E. 1994. Synchrotron infrared absorbance measurements of hydrogen in MgSiO3 perovskite. Science, 264: 1558-1560.
[77]  刘祥文, 金振民, 金淑燕, 曲晶, 徐薇. 2005. 两类榴辉岩的石榴石变形特征差异――来自TEM研究的证据. 岩石学报, 21(2): 411-420.
[78]  邵同宾, 嵇少丞, 李建峰, 王茜, 宋茂双. 2011a. Paterson高温高压流变仪及其在岩石流变学中的应用. 大地构造与成矿学, 35(3): 472-491.
[79]  邵同宾, 嵇少丞, 王茜. 2011b. 部分熔融岩石流变学. 地质论评, 57(6): 851-869.
[80]  盛英明, 夏群科, 丁强, 杨晓志, 于慧敏, 郝艳涛. 2005. 大别山榴辉岩中石榴石的结构水: 红外光谱分析. 矿物学报, 25(4): 334-340.
[81]  盛英明, 夏群科, 杨晓志. 2004. 大陆深俯冲过程中水分布的不均一性:大别山碧溪岭榴辉岩中石榴石的红外光谱分析. 科学通报, 49(4): 390-395.
[82]  唐户俊一郎著. 何昌荣,齐庆新,乔春生译. 2005. 流变与地球动力学. 北京: 地震出版社: 253.
[83]  王德滋, 谢磊. 2008. 光性矿物学 (第三版). 北京: 科学出版社: 278.
[84]  王勤, 嵇少丞, 许志琴. 2007. 橄榄石的晶格优选定向、含水量与地震波各向异性:对大陆俯冲带变形环境的约束. 岩石学报, 23(12): 3065-3077.
[85]  夏群科, 杨晓志, 郝艳涛, 盛英明, 李佩. 2007. 深部地球中水的分布和循环. 地学前缘, 14(2): 10-23.
[86]  杨翠平, 金振民, 吴耀. 2010. 地幔转换带中的水及其地球动力学意义. 地学前缘, 17(3): 114-126.
[87]  章军锋, 金振民, Green II H W, 金淑燕. 2000. 大陆深俯冲带中的水:来自大别山超高压榴辉岩的证据. 科学通报, 45(17): 1889-1894.
[88]  赵永红, 施旭, Zimmerman M, Kohlstedt D L. 2006. 含水对富铁橄榄石流变性的影响. 岩石学报, 22(9): 2381-2386.
[89]  赵永红, 王中言, Bruhn D F, Kohlstedt D L. 2003. 压力对橄榄石流变性的影响. 岩石学报, 19(3): 577-582.
[90]  Aines R D and Rossman G R. 1984. The hydrous component in garnets: Pyralsites. Am Mineral, 69: 1116-1126.
[91]  Aizawa Y, Barnhoorn A, Faul U H, Fitz Gerald J D, Jackson I and Kovács I. 2008. Seismic properties of Anita Bay dunite: An exploratory study of the influence of water. J Petrol, 49(4): 841-855.
[92]  Avé Lallemant H G. 1978. Experimental deformation of diopside and websterite. Tectonophysics, 48: 1-27.
[93]  Azuma S, Katayama I, Hirauchi K?I and Yamashita S. 2010. Strength contrast between plagioclase and olivine at water?rich Moho depths. J Mineral Petrol Sci, 105: 286-290.
[94]  Bai Q and Green H W. 1998. Plastic flow of Mn2GeO4 1: Toward a rheological model of the Earth′s transition zone. // Manghnani M H and Yagi T. Properties of Earth and Planetary materials at high pressure and temperature. AGU monograph, 101: 461-472.
[95]  Demouchy S, Deloule S E, Frost D J and Keppler H. 2005. Pressure and temperature?dependence of water solubility in iron?free wadsleyite. Am Mineral, 90: 1084-1091.
[96]  Demouchy S, Jacobsen S D, Gaillard F and Stern C R. 2006. Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34(6): 429-432.
[97]  Den Brok B. 1992. An experimental investigation into the effect of water on the flow of quartzite. PhD thesis Univ. Utrecht. Geological Ultraiectina, 95: 178.
[98]  Griggs D T. 1974. A modal of hydrolytic weakening in quartz. J Geophys Res, 79: 1653-1661.
[99]  Griggs D T and Blacic J D. 1964. The strength of quartz in the ductile regime. EOS Trans AGU, 45: 102-103.
[100]  Griggs D T and Blacic J D. 1965. Quartz: anomalous weakness of synthetic crystals. Science, 147: 292-295.
[101]  Heard H C and Carter N L. 1968. Experimentally induced "natural" intragranular flow in quartz and quartzite. Am J Sci, 266: 1-42.
[102]  Huang X, Xu Y and Karato S. 2005. Water content of the mantle transition zone from the electrical conductivity of wadsleyite and ringwoodite. Nature, 434: 746-749.
[103]  Ingrin J, Hercule S and Charton T. 1995. Diffusion of hydrogen in diopside: Results of dehydration experiments. J Geophys Res, 100: 15489-15499.
[104]  Ingrin J and Skogby H. 2000. Hydrogen in nominally anhydrous upper?mantle minerals: Concentration levels and implications. Eur J Mineral, 12: 543-570.
[105]  Inoue T, Wada T, Sasaki R and Yurimoto H. 2010. Water partitioning in the Earth′s mantle. Phys Earth Planet Int, 183: 245-251.
[106]  Inoue T, Weidner D J, Northrup P A and Paries J B. 1998. Elastic properties of hydrous ringwoodite (γ?phase) in Mg2SiO4. Earth Planet Sci Lett, 160: 107-113.
[107]  Inoue T, Yurimoto H and Kudoh Y. 1995. Hydrous modified spinel, Mg1.75SiH0.5O4: A new water reservoir in the mantle transition zone. Geophys Res Lett, 22: 117-120.
[108]  Jackson I, Paterson M S and Fitz Gerald J D. 1992. Seismic wave dispersion and attenuation in Aheim dunite. Geophys J Int, 108: 517-534.
[109]  Jacobsen S D, Smyth J R, Spetzler H A, Holl C M and Frost D J. 2004. Sound velocities and elastic constants of iron?bearing hydrous ringwoodite. Phys Earth Planet Int, 143-144: 77-91.
[110]  Jaoul O, Tullis J and Kronenberg A. 1984. The effect of varying water contents on the creep behavior of Heavitree quartzite. J Geophys Res, 89: 4298-4312.
[111]  Ji S C and Martignole J. 1994. Ductility of garnet as an indicator of extremely high temperature deformation. J Struct Geol, 16: 985-996.
[112]  Ji S C and Xia B. 2002. Rheology of polyphase earth materials. Polytechnic International Press: 259
[113]  Ji S C, Zhao P L and Saruwatari K. 1997. Fracturing of garnet crystals in anisotropic metamorphic rocks during uplift. J Struct Geol, 18: 1375-1379.
[114]  Jin Z M, Zhang J, Green II H W and Jin S. 2001. Eclogite rheology: Implications for subducted lithosphere. Geology, 29(8): 667-670.
[115]  Johnson E A. 2003. Hydrogen in nominally anhydrous crustal minerals. PhD Dissertation, California Institute of Technology, Pasadena, California.
[116]  Johnson E A and Rossman G R. 2004. A survey of hydrous species and concentrations in igneous feldspars. Am Mineral, 89: 586-600.
[117]  Jung H and Karato S. 2001. Water?induced fabric transitions in olivine. Science, 293: 1460-1463.
[118]  Jung H, Katayama I, Jiang Z, Hiraga T and Karato S. 2006. Effect of water and stress on the lattice?preferred orientation of olivine. Tectonophysics, 421: 1-22.
[119]  Karato S. 1986. Does partial melting reduce the creep strength of the upper mantle. Letters To Nature, 319(23): 309-310.
[120]  Karato S. 1989. Defects and plastic deformation in olivine // Karato S and Toriumi M. Rheology of Solids and of the Earth. Oxford Univ Press: 176-208.
[121]  Karato S. 1990. The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347: 272-273.
[122]  Karato S. 1995. Effects of water on the seismic wave velocity in the Earth′s upper mantle. Proc Japan Academy, Ser B, 71: 61-66.
[123]  Karato S. 1998. Plastic deformation of silicate spinel under transition?zone conditions of the Earth′s mantle. Nature, 395: 266-269.
[124]  Karato S. 2002. The Dynamics Structure of the Deep Earth: An Interdisciplinary Approach. New Jersey: Princeton and Oxford: 241.
[125]  Karato S. 2010. Rheology of the Earth′s mantle: A historical review. Gondwana Res, 18(1): 17~45.
[126]  Karato S and Jung H. 2003. Effects of pressure on high?temperature dislocation creep in olivine polycrystals. Philos Mag, 83: 401-414.
[127]  Karato S and Wu P. 1993. Rheology of the upper mantle: A synthesis. Science, 260: 771-778.
[128]  Katayama I, Jung H and Karato S. 2004. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, 32: 1045-1048.
[129]  Katayama I and Karato S. 2008a. Effects of water and iron content on the rheological contrast between garnet and olivine. Phys Earth Planet Int, 166: 57-66.
[130]  Katayama I and Karato S. 2008b. Low?temperature, high?stress deformation of olivine under water?saturated conditions. Phys Earth Planet Int, 168: 125-133.
[131]  Katayama I and Nakashima S. 2003. Hydroxyl in clinopyroxene from the deep subducted crust: Evidence for H2O transport into the mantle. Am Mineral, 88: 229-234.
[132]  Litasov K, Ohtani E, Langenhorst F, Yurimoto H, Kubo T and Kondo T. 2003. Water solubility in Mg perovskites and water storage capacity in the lower mantle. Earth Planet Sci Lett, 211: 189-203.
[133]  Mackwell S J, Kohlstedt D L and Paterson M S. 1985. The role of water in the deformation of olivine single crystals. J Geophys Res, 90: 11319-11333.
[134]  Mainprice D H and Paterson M S. 1984. Experimental studies of the role of water in the plasticity of quartzites. J Geophys Res, 89: 4257-4270.
[135]  Mancktelow N S and Pennacchioni G. 2010. Why calcite can be stronger than quartz. J Geophys Res, 115, B01402: 10.1029/2009JB006526
[136]  Martin R F and Donnay G. 1972. Hydroxyl in the mantle. Am Mineral, 57: 554-570.
[137]  McLaren A C, Fitz Gerald J D and Gerretsen J. 1989. Dislocation nucleation and multiplication in synthetic quartz: Relevance to water weakening. Phys Chem Minerals, 16: 465-482.
[138]  McLaren A C and Hobbs B E. 1972. Transmission electron microscope investigation of some naturally deformed quartzites // Heard H C, Borg I Y, Carter N L, Raleigh C B. Flow and Fracture of Rocks. Geophysical Monograph, 16, AGU, Washington, DC: 55-66.
[139]  McLaren A C and Retchford J A. 1969. Transmission electron microscope study of the dislocations in plastically deformed synthetic quartz. Physica Status Solidi, 33: 657-668.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133