全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西藏冈底斯南缘中新世含矿斑岩源区组成与成因

Keywords: 锆石U-Pb定年,Hf同位素示踪,冈底斯,埃达克质斑岩,部分熔融

Full-Text   Cite this paper   Add to My Lib

Abstract:

青藏高原南部中新世下地壳流动是当前大陆动力学研究的热点,关键科学问题是下地壳的流动方向。LA-ICP-MS定年结果表明冲江斑状黑云母二长花岗岩的形成时代为14.9~14.8Ma,朱诺斑状花岗岩的形成时代为15.3~14.9Ma。含矿埃达克质斑岩的特征如下:SiO2含量67.72%~74.49%,K2O含量2.85%~5.98%,Sr含量93~804μg/g,高Sr/Y(16~139)、(La/Yb)N(21~43)比值,Eu/Eu*值为0.6~0.91。冲江岩体锆石εHf(t)值为1.2~5.1,朱诺岩体锆石εHf(t)值为?6.9~?0.1,他们与徐旺春等报道的镁铁质麻粒岩的锆石Hf值(?2.5~4.8)具有很好的叠合性,暗示镁铁质麻粒岩(印度镁铁质下地壳)可以作为他们的岩浆源区。此外,Sr-Nd同位素表现出雅鲁藏布江蛇绿岩和拉萨地块两个端元混合的特征,Pb同位素表现出雅鲁藏布江蛇绿岩和喜马拉雅富集陆壳端元的特征。上述同位素地球化学特征表明,冈底斯中新世埃达克质斑岩的岩浆源区物质组成包括:拉萨陆壳、印度陆壳、雅鲁藏布江蛇绿岩(地幔成分),表现出加厚下地壳部分熔融特征,暗示青藏高原南部由南向北的下地壳流动方向。

References

[1]  曹建玲, 石耀霖, 张怀, 王辉. 2009. 青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟. 科学通报, 54(2): 224?234.
[2]  李光明, 芮宗瑶. 2004. 西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄. 大地构造与成矿学, 28(2): 165?170.
[3]  李光明, 芮宗瑶, 王高明, 林方成, 刘波, 佘宏全, 丰成友, 屈文俊. 2005. 西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义. 矿床地质, 24(5): 14?22.
[4]  潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521?533.
[5]  曲晓明, 侯增谦, 国连杰, 徐文艺. 2004. 冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染: Nd、Sr、Pb、O同位素约束. 地质学报, 78(6): 813?821.
[6]  曲晓明, 侯增谦, 李振清. 2003. 冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义. 地质学报, 72(2): 245? 252.
[7]  芮宗瑶, 侯增谦, 曲晓明, 张立生, 王龙生, 刘玉琳. 2003. 冈底斯斑岩铜矿成矿时代及青藏高原隆升. 矿床地质, 22(3): 217?225.
[8]  沈显杰, 张文仁, 杨淑贞, 管烨, 金旭. 1990. 青藏高原南北地体壳幔热结构差异的大地热流证据. 中国地质科学院院报, 21(2): 203?214.
[9]  滕吉文, 阮小敏, 张永谦, 胡国泽, 闫亚芬. 2012. 青藏高原地壳与上地幔成层速度结构与深部层间物质的运移轨迹. 岩石学报, 28(12): 4077?4100.
[10]  滕吉文, 熊绍柏, 尹周勋, 徐忠信, 王香泾, 卢德源, Jobert Georges, Hirn Alfred. 1983. 喜马拉雅山北部地区的地壳结构模型和速度分布特征. 地球物理学报, 26(6): 525?540.
[11]  汪洋, 程素华. 2013. 中国西部及邻区岩石圈热状态与流变学强度特征. 地学前缘, 19(1): 182?189.
[12]  Beaumont C, Jamieson R A, Nguyen M H and Lee B. 2001. Himalayan tectonics explained by extrusion of a low- viscosity crustal channel coupled to focused surf?ace denudation. Nature, 414(6865): 738?742.
[13]  Beaumont C, Jamieson R A, Nguyen M H and Medvedev S. 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Journal of Geophysical Research, 109, B06406, doi: 10.1029/2003JB002809.
[14]  Beaumont C, Nguyen M H, Jamieson R A and Ellis S. 2006. Crustal flow modes in large hot orogens. Geological Society, London, Special Publications, 268(1): 91?145.
[15]  Bird P. 1991. Lateral extrusion of lower crust from under high topography in the isostatic limit. Journal of Geophysical Research, 96(B6): 10275?10286.
[16]  Blichert-Toft J. 2008. The Hf isotopic composition of zircon reference material 91500. Chemical Geology, 253(3): 252?257.
[17]  Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Lett?ers, 1?2(148): 243?258.
[18]  Blisniuk P M, Hacker B R, Glodny J, Ratschbacher L, Bi S, Wu Z, McWilliams M O and Calvert A. 2001. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412(6847): 628?632.
[19]  Chen L, Booker J R, Jones A G, Wu N, Unsworth M J, Wei W and Tan H. 1996. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surve?ying. Science, 274(5293): 1694?1696.
[20]  Chung S L, Chu M F, Ji J, O''Reilly S Y, Pearson N J, Liu D, Lee T Y and Lo C H. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, doi: 10.1016/j.tecto.2009.08. 008.
[21]  Coleman M and Hodges K. 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-weat extension. Nature, 374: 49?52.
[22]  Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662?665.
[23]  Gao Y, Hou Z, Kamber B S, Wei R, Meng X and Zhao R. 2007a. Adakite-like porphyries from the southern Tibe?tan continental collision zones: Evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153(1): 105-120, doi: 10.1007/s00410-006- 0137-9.
[24]  Gao Y, Hou Z, Kamber B S, Wei R, Meng X and Zhao R. 2007b. Lamproitic rocks from a continental collision zone: Evidence for recycling of subducted Tethyan oceanic sediments in the mantle beneath southern Tibet. Journal of Petrology, 48(4): 729-752, doi: 10.1093/pet?ro?logy/egl080.
[25]  Godin L, Grujic D, Law R D and Searle M P. 2006. Channel flow, ductile extrusion and exhumation in continental collision zones: An introduction. Geological Society, London, Special Publications, 268(1): 1?23.
[26]  Guan Q, Zhu D C, Zhao Z D, Dong G C, Zhang L L, Li X W, Liu M, Mo X X, Liu Y S and Yuan H L. 2012. Crustal thickening prior to 38Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1): 88?99.
[27]  Guo Z, Wilson M and Liu J. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subdu-ction-modified lower crust. Lithos, 96(1): 205?224.
[28]  Harrison T M. 2006. Did the Himalayan crystallines extrude partially molten from beneath the Tibetan plateau? Ge?o??l?-ogical Society, London, Special Publications, 268(1): 237?254.
[29]  Hou Z Q, Gao Y F, Qu X M, Rui Z Y and Mo X X. 2004. Origin of adakitic intrusives generated during mid- Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1): 139?155.
[30]  Ji W Q, Wu F Y, Liu C Z and Chung S L. 2009. Geoch?ronology and petrogenesis of granitic rocks in Gang?dese batholith, southern Tibet. Science in China(Series D: Earth Sciences), 52(9): 1240?1261.
[31]  King J, Harris N, Argles T, Parrish R, Charlier B, Sherlock S and Zhang H F. 2007. First field evidence of southward ductile flow of Asian crust beneath southern Tibet. Geology, 35(8): 727?730.
[32]  Lee H, Chung S, Lo C, Ji J, Lee T, Qian Q and Zhang Q. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1): 20?35.
[33]  Leech M L. 2008. Does the Karakoram fault interrupt mid-crustal channel flow in the western Himalaya? Earth and Planetary Science Letters, 276(3): 314?322.
[34]  Liu Y, Zong K, Kelemen P B and Gao S. 2008. Geoch?emistry and magmatic history of eclogites and ultram?afic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247(1): 133?153.
[35]  Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J and Chen H H. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535? 1546.
[36]  Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological, 101: 635?643.
[37]  Mukherjee S, Koyi H A and Talbot C J. 2012. Implications of channel flow analogue models for extrusion of the Higher Himalayan Shear Zone with special reference to the out-of-sequence thrusting. International Journal of Earth Sciences, 101(1): 253?272.
[38]  Streule M J, Carter A, Searle M P and Cottle J M. 2012. Constraints on brittle field exhumation of the Everest- Makalu section of the Greater Himalayan Sequence: Implications for models of crustal flow. Tectonics, 31, TC3010, doi: 10.1029/2011TC003062.
[39]  Sun S S and McDonough W F. 1989. Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes // Saunders A D and Norry M J. Magmatism in the ocean basins. Geological Society, London, Special Publication, 42: 313?345.
[40]  Van N P, Boyer D, Therme P, Yuan X C, Li L and Jin G Y. 1986. Partial melting zones in the crust in southern Tibet from magnetotelluric results. Nature, 319(23): 310?314.
[41]  Wagner T, Lee J, Hacker B R and Seward G. 2010. Kinem?atics and vorticity in Kangmar Dome, southern Tibet: Testing midcrustal channel flow models for the Him?alaya. Tectonics, 29, TC6011, doi: 10.1029/2010T?C00?2746.
[42]  Wang H, Wu Y B, Gao S, Liu X C, Liu Q, Qin Z W, Xie S W and Yang S H. 2010. Continental origin of eclogites in the North Qinling terrane and its tectonic impli?cations. Precambrian Research, 230: 13?30.
[43]  Wang Q, Zhang P, Freymueller J T, Bilham R, Larson K M, Lai X, You X, Niu Z, Wu J and Li Y. 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294, doi: 10.1126/science.1063647.
[44]  Wang X and He J. 2012. Channel flow of the lower crust and its relation to large-scale tectonic geomorphology of the eastern Tibetan Plateau. Science China (Earth Scie?nces), 55(8): 1383?1390.
[45]  Williams H, Turner S, Kelley S and Harris N. 2001. Age and composition of dikes in Southern Tibet: New const?raints on the timing of east-west extension and its relati?on?ship to postcollisional volcanism. Geology, 29(4): 339?342.
[46]  Wilson M. 1989. Igneous petrogenesis. London: Unwim Hyman: 1?366.
[47]  Xu J, Shinjo R, Defant M J, Wang Q and Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delam?inated lower continental crust? Geology, 30(12): 1111? 1114.
[48]  Xu W C, Zhang H F, Guo L and Yuan H L. 2010. Miocene high Sr/Y magmatism, south Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114(3): 293?306.
[49]  Yin A, Harrison T M, Ryerson F J, Wenji C, Kidd W and Copeland P. 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Journal of Geophysical Research, 99(B9): 18175?18201.
[50]  Yuan H L, Gao S, Dai M N, Zong C L, G U Nther D, Fontaine G H, Liu X M and Diwu C R. 2008. Sim?ultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP- MS. Chemical Geology, 247(1): 100?118.
[51]  Zhang P, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P, Wang Q, Niu Z, Sun J and Wu J. 2004. Continuous defor-mation of the Tibetan Plateau from global posi?tioning system data. Geology, 32(9): 809?812.
[52]  Zhang Z, Yuan X, Chen Y, Tian X, Kind R, Li X and Teng J. 2010. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth and Planetary Science Letters, 292(3): 254?264.
[53]  Zhao Z, Mo X, Dilek Y, Niu Y, DePaolo D J, Robinson P, Zhu D, Sun C, Dong G, Zhou S and Others. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra- continental subduction beneath southern Tibet. Lithos, 113(1): 190?212.
[54]  蔡宏翔, 宋成骅, 刘经南. 1997. 青藏高原1993和1995年地壳运动与形变的GPS监测结果分析. 中国科学(D辑), 27(3): 233?238.
[55]  曹军, 李德威, 肖灯意, 郭建慈, 次邛. 2010. 冈底斯朱诺地区中新世板内热隆伸展成矿. 地质科技情报, 29(1): 66?73.
[56]  高永丰, 侯增谦, 魏瑞华. 2003. 冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义. 岩石学报, 19(3): 418?428.
[57]  侯增谦, 曲晓明, 王淑贤, 高永丰, 杜安道, 黄卫. 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用. 中国科学(D辑), 33(7): 609?618.
[58]  季建清, 钟大赉, 宋彪, 朱美妃, 温大任. 2004. 喜马拉雅中段高压麻粒岩变质作用、地球化学与年代学. 岩石学报, 20(5): 294?311.
[59]  金胜, 魏文博, 汪硕, 叶高峰, 邓明, 谭捍东. 2010. 青藏高原地壳高导层的成因及动力学意义探讨――大地电磁探测提供的证据. 地球物理学报, 53(10): 2376?2385.
[60]  李德威. 1995. 再论大陆构造与动力学. 地球科学―― 中国地质大学学报, 20(1): 19?26.
[61]  李德威. 2003. 青藏高原隆升机制新模式. 地球科学――中国地质大学学报, 28(6): 593?600.
[62]  李德威. 2004. 青藏高原南部晚新生代板内造山与动力成矿. 地学前缘, 11(4): 361?369.
[63]  李德威. 2008a. 大陆下地壳流动: 渠流还是层流? 地学前缘, 15(3): 130?139.
[64]  李德威. 2008b. 青藏高原及邻区三阶段构造演化与成矿演化. 地球科学――中国地质大学学报, 33(6): 723? 742.
[65]  李德威, 廖群安, 袁晏明, 万渝生, 刘德民, 张雄华, 易顺华, 曹树钊, 谢德凡. 2003. 喜马拉雅造山带中段日玛那麻粒岩锆石U-Pb年代学. 科学通报, 48(23): 2647?2650.
[66]  李德威, 庄育勋. 2006. 青藏高原大陆动力学的科学问题. 地质科技情报, 25(2): 1?10.
[67]  林武, 梁华英, 张玉泉, 谢应雯. 2004. 冈底斯铜矿带冲江含矿斑岩的岩石化学及锆石SHRIMP年龄特征. 地球化学, 33(6): 585?592.
[68]  孟祥金, 侯增谦, 高永丰, 黄卫, 曲晓明, 屈文俊. 2003. 西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义. 地质论评, 49(6): 660?666.
[69]  莫济海, 梁华英, 喻亨祥, 谢应雯, 张玉泉. 2006. 冈底斯斑岩铜矿带冲江及驱龙含矿斑岩体锆石ELA-ICP-MS及SHRIMP定年对比研究. 大地构造与成矿学, 30(4): 504?509.
[70]  苏伟. 2012. 青藏高原及邻区壳幔速度结构及面波方位各向异性. 北京: 中国地震局地球物理研究所博士学位论文: 50?60.
[71]  吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589?1604.
[72]  熊小松. 2010. 中国大陆莫霍面深度与变化特征及其地球动力学意义. 北京: 中国地质科学院博士学位论文: 55?56.
[73]  许志琴, 杨经绥, 嵇少丞, 张泽明, 李海兵, 刘福来, 张建新, 吴才来, 李忠海, 梁凤华. 2010. 中国大陆构造及动力学若干问题的认识. 地质学报, 84(1): 1?29.
[74]  翟利剑, 包汇慧, 毕思文. 2008. 青藏高原锡铁山-格尔木-亚东剖面地温分布特征. 吉林大学学报(地球科学版), 38(5): 795?800.
[75]  张雪梅, 孙若昧, 滕吉文. 2007. 青藏高原及其邻区地壳、岩石圈和软流层厚度研究. 科学通报, 52(6): 797? 804.
[76]  赵志丹, 莫宣学, 董国臣, 周肃, 朱弟成, 廖忠礼, 孙晨光. 2007. 青藏高原Pb同位素地球化学及其意义. 现代地质, 21(2): 265?274.
[77]  郑有业, 高顺宝, 程力军, 李国梁, 冯南平, 樊子珲, 张华平, 郭建慈, 张刚阳. 2004. 西藏冲江大型斑岩铜(钼金)矿床的发现及意义. 地球科学――中国地质大学学报, 29(3): 333?339.
[78]  郑有业, 高顺宝, 张大全, 樊子珲, 张刚阳, 马国桃. 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13(4): 233?239.
[79]  郑有业, 张刚阳, 许荣科, 高顺宝, 庞迎春, 曹亮, 杜安道, 石玉若. 2007. 西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束. 科学通报, 52(21): 2542?2548.
[80]  Aitchison J C, Abrajevitch A, Ali J R, Badengzhu J R, Davis A M, Luo H, Liu J B, McDermid I and Ziabrev S. 2002. New insights into the evolution of the Yarlung Tsangpo suture zone, Xizang (Tibet), China. Episodes, 25(2): 90?94.
[81]  Aitchison J C, Ali J R and Davis A M. 2007. When and where did India and Asia collide? Journal of Geoph?ysical Research: Solid Earth, 112, B05423, doi: 10.1029/2006JB004706.
[82]  Aitchison J C, Davis A M, Liu J, Luo H, Malpas J G, McDermid I R, Wu H, Ziabrev S V and Zhou M. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183(1): 231?244.
[83]  Aoya M, Wallis S R, Terada K, Lee J, Kawakami T, Wang Y and Heizler M. 2005. North-south extension in the Tibetan crust triggered by granite emplacement. Geol?ogy, 33(11): 853?856.
[84]  Chen J L, Xu J F, Zhao W X, Dong Y H, Wang B D and Kang Z Q. 2011. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane: Implications for lower crustal flow beneath the Southern Tibetan Plateau. Lithos, 125(3): 928?939.
[85]  Chung S L, Liu D, Ji J, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021? 1024.
[86]  Clark M K and Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703?706.
[87]  Li D W and Yin A. 2008. Orogen-parallel, active left-slip faults in the Eastern Himalaya: Implications for the growth mechanism of the Himalayan Arc. Earth and Planetary Science Letters, 274: 258?267.
[88]  Li D W. 2013. Lower Crustal Flow from Ganges Basin in to the Tibetan Plateau since the Miocence: Effects and Mechanism. Chengdu: Acta Geologica Sinica: 87(supp), 362?363.
[89]  Li Q, Gao R, Lu Z, Guan Y, Zhang J, Li P, Wang H, He R and Karplus M. 2009. The thickness and structural characteristics of the crust across Tibetan plateau from active-sources seismic profiles. Earthquake Science, 22(1): 21?31.
[90]  Liu Y, Hu Z, Gao S, D Günther, Xu J, Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1): 34?43.
[91]  Nelson K D, Zhao W, Brown L D, Kuo J, Che J, Liu X, Klemperer S L, Makovsky Y, Meissner R and Mechie J. 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science, 274(5293): 1684?1688.
[92]  Rapp R P, Shimizu N, Norman M D and Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constr?aints at 3.8 GPa. Chemical Geology, 160(4): 335?356.
[93]  Rippe D and Unsworth M. 2010. Quantifying crustal flow in Tibet with magnetotelluric data. Physics of the Earth and Planetary Interiors, 179(3): 107?121.
[94]  Rollinson H R. 1993. Using geochemical data: Evaluation, presentation, interpretation. New York: Longman Gro?up UK Ltd: 1?352.
[95]  Royden L H, Burchfiel B C, King R W, Wang E, Chen Z, Shen F and Liu Y. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788?790.
[96]  Rudnick R L and Gao S. 2003. Composition of the Continental Crust // Rudnick R L. The Crust. Oxford: Elsevier: 3, 1?64.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133