全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

云南个旧卡房碱性火山岩地球化学特征及意义

Keywords: 个旧,卡房,碱性火山岩,地球化学特征,铜锡矿

Full-Text   Cite this paper   Add to My Lib

Abstract:

个旧地区印支期的火山作用主要有三期,即中三叠世安尼期、拉丁尼克早期和拉丁尼克晚期-诺利克期。通过对与成矿关系密切的卡房铜锡矿安尼期碱性火山岩的岩相学、地球化学研究发现:SiO2含量为42.22%~46.61%,MgO含量为8.61%~18.19%,K2O+Na2O值为3.52%~7.52%,K2O/Na2O值为0.28~25.95,TiO2含量为2.03%~3.51%,属于碱性超基性火山岩;富集高场强元素(Nb、Ta),大离子亲石元素(Rb、Ba、Sr、Cs),稀土元素表现为LREE富集、HREE相对亏损的右倾稀土配分模式,δEu异常不明显,弱δCe负异常。卡房碱性火山岩成岩过程主要受地幔部分熔融作用,未经明显的地壳混染作用,源区可能来自于富含金云母(或角闪石)地幔橄榄岩部分熔融。卡房火山岩具有洋岛玄武岩(OIB)地球化学特征,形成于弧后裂谷盆地,并为铜锡矿提供了原始矿源层。

References

[1]  陈毓川, 朱裕生. 1993. 中国矿床成矿模式. 北京: 地质出版社: 209?211.
[2]  秦德先, 黎应书, 谈树成, 陈爱兵, 薛传东, 范柱国, 党玉涛, 童祥, 武俊德, 李玉新, 王海云. 2006. 云南个旧锡矿的成矿时代. 地质科学, 41(1): 122?132.
[3]  孙书勤, 汪云亮, 张成江. 2003. 玄武岩类岩石大地构造环境的Th、Nb、Zr. 地质论评, 49(1): 40?47.
[4]  汪云亮, 张成江, 修淑芝. 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 403?412.
[5]  王中刚, 于学元, 赵振华. 1989. 稀土元素地球化学. 北京: 科学出版社: 133?190.
[6]  张娟, 毛景文, 程彦博, 李肖龙. 2012. 云南个旧卡房矿田锡-铜矿床成矿作用过程探讨: 成矿流体约束. 岩石学报, 28(1): 166?182.
[7]  赵振华. 1997. 微量元素地球化学原理. 北京: 科学出版社: 1?169.
[8]  周新民, 陈图华. 1981. 我国东南沿海新生代玄武岩的成分和演化特征. 地质学报, 1: 29?40.
[9]  朱弟成, 潘桂棠, 莫宣学, 王立全, 赵志丹, 廖忠礼, 耿全如, 董国臣. 2006. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境. 地质学报, 80(9): 1312?1328.
[10]  Condie K C. 2001. Mantle plumes and their record in earth history. Cambridge, UK: Cambridge University Press: 1?272.
[11]  Frey F A and Roden M F. 1987. The mantle source for the Hawaiian islands: Constrains from the lavas and ultr?am?afic inclusions // Menzies M A and Hawkesworth C J. Mantle Metasomatism. Academic Press: 423?464.
[12]  Green D H. 1971. Composition of basaltic magmas as indicators of conditions of origin: Application to ocea?nic volcanism. Phil Trans R Soc Land, 268: 707?725.
[13]  Holm P M, Lou S M and Nielsen A. 1982. The geochemistry and petrogenesis of the lavas of the Vulsinian district, Roman Province, central Italy. Contributions to Mineralogy and Petrology, 80: 367?378.
[14]  Hofmann A W. 1988. Chemical differentiation of the earth: The relationship between mantle continental crust and oceanic crust. Earth and Planetary Science Letters, 90: 297?314.
[15]  Winchester J A and Floyd P A. 1977. Geochemical discrimi-nation of different magma series and their different?iation products using immobile elements. Chemical Geology, 20: 325?343.
[16]  Xu Y G. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxi-ng’anling-Taihangshan gravity lineament. Lithos, 96: 281?298.
[17]  Xu Y G, Chung S L, Jahn B M and Wu G Y. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southw?estern China. Lithos, 58: 145?168.
[18]  邓晋福, 罗照华, 苏尚国, 莫宣学, 于炳松, 赖兴运, 谌宏伟. 2004. 岩石成因、构造环境与成矿作用. 北京: 地质出版社: 1?381.
[19]  方维萱, 胡瑞忠, 谢桂青, 苏文超. 2002. 云南哀牢山地区构造岩石地层单元及其构造演化. 大地构造与成矿学, 26(1): 33?41.
[20]  方维萱, 贾润幸. 2011a. 云南个旧超大型锡铜矿区变碱性苦橄岩类特征与大陆动力学. 大地构造与成矿学, 35(1): 137?148.
[21]  方维萱, 张海, 贾润幸. 2011b. 滇桂个旧-那坡三叠纪弧后裂谷盆地动力学与成矿序列. 大地构造与成矿学, 35(4): 552?566.
[22]  侯增谦. 1992. 华北某些富磷碱性-偏碱性杂岩岩浆成分和熔体结构与含矿性关系. 岩石学报, 8(3): 222?223.
[23]  李曙光. 1993. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图. 岩石学报, 9(2): 146?157.
[24]  黎应书, 秦德先, 邹滔, 贾福聚, 万朝英, 孙彩霞, 周年胜. 2008. 云南个旧拉丁尼克期玄武岩地球化学特征及其大地构造背景. 吉林大学学报(地球科学版), 38(4): 624?630.
[25]  黎应书, 秦德先, 郭宁宁, 罗曦, 邹滔, 万朝英, 周年胜. 2009. 个旧东区印支期玄武岩大地构造环境及其成矿意义. 有色金属, 61(2): 104?109.
[26]  毛景文, 程彦博, 郭春丽, 杨宗喜, 冯佳睿. 2008. 云南个旧锡矿田: 矿床模型及若干问题讨论. 地质学报, 82(1): 1455?1467.
[27]  牛耀龄. 2010. 板内洋岛玄武岩(OIB)成因的一些基本概念和存在的问题. 科学通报, 55(2): 103?114.
[28]  彭张翔. 1992. 个旧锡矿成矿模式商榷. 云南地质, 13(4): 362?368.
[29]  吴孔友, 刘磊. 2010. 大南盘江地区构造对油气藏破坏作用研究. 大地构造与成矿学, 34(2): 255?261.
[30]  夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩. 岩石矿物学杂志, 26(1): 77?89.
[31]  徐义刚. 2002. 地幔柱构造、大火成岩省及其地质效应. 地学前缘, 9(4): 341?353.
[32]  杨宗喜, 毛景文, 陈懋弘, 程彦博, 常勇. 2010. 云南个旧卡房铜矿地质地球化学与矿床成因探讨. 岩石学报, 26(3): 830?844.
[33]  冶金工业部西南冶金地质勘探公司(308队). 1984. 个旧锡矿地质. 北京: 冶金工业出版社: 10?220.
[34]  张贵山, 温汉捷, 胡瑞忠, 裘愉卓. 2009. 福建新生代碱性超基性火山岩地球化学特征及构造意义. 地质学报, 83(2): 284?294.
[35]  张信伦. 2011. 云南个旧印支期基性火山岩地球化学特征及其大地构造背景. 矿产与地质, 25(5): 429?435.
[36]  赵正, 漆亮, 黄智龙, 严再飞, 许成. 2012. 攀西裂谷南段鸡街碱性超基性岩微量元素和Sr-Nd同位素地球化学及其成因探讨. 岩石学报, 28(6): 1915?1927.
[37]  庄永秋, 王任重, 杨树培. 1996. 云南个旧锡多金属矿床. 北京: 地震出版社: 1?183.
[38]  Allègre C J and Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1): 1?25.
[39]  Anders E and Greresse N. 1989. Abundances of the elements: Meteoritic and solar. Geochimical et Cosmochimica Acta, 53: 197?214.
[40]  Cabanis B and Lecolle M. 1980. Le diagramme La/10-Y/ 15-Nb/8: Unoutildour la discrimination des series volc?a?n-iaues et la mise en evidence des processus de mela?nge et/on de contamination crustale. Comptes Rendus de l''Academie des Sciences, 309: 2023?2029.
[41]  Clive R N and Taylor L A. 1989. A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism? Geochimical et Cosmochimica Acta, 53: 1035?1040.
[42]  Irvine T N and Baragar W R. 1971. A guide to the chemical classification of the common igneous rocks. Canadian Journal of Earth Sciences, 8: 523?548.
[43]  Kent W, Saunders A D, Kempton P D and Ghose N C. 2000. Rajmahal Basalts, eastern India: Mantle sources and melt distribution at a volcanic rifted margin // Mahoney J J and Coffin M F. Large igneous provinces; contin?ental, oceanic, and planetary flood volcanism. Geoph?ysical Monograph, American Geophysical Union, 100: 5?182.
[44]  Le Maitre RW, Bateman P, Dudek A, Keller J, Le Bas M J, Sabine P A, Schmid R, Sorensen H, Strecjeisen A, Wooley A R and Zanettin B. 1989. A classification of Igneous Rocks and Glossary of Terms. Oxford: Blac?kwell Scientific: 1?193.
[45]  Li X H, Li Z X, Zhou H W, Liu Y and Kinny P D. 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimoda1 volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia. Precambrian Research, 113: 135?54.
[46]  Liu Y S, Zong K Q, Kelemen P. B and Gao S. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamor?phism of lower crustal cumulates. Chemical Geology, 247: 133?153.
[47]  McDonough W F. 1990. Constraints on the composition of the continental lithospheric mantle. Earth and Plan?etary Science Letters, 101(1): 1?18.
[48]  Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and contin?ental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56: 207?218.
[49]  Middlemost E A K. 1975. The basalt clan. Earth Science Reviews, 11(4): 337?364.
[50]  Miller C, Schuster R, Klotzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magm?a?tism in SW Tibet: Geochemical and Sr-Nd-Pb-O isot?opic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40: 1399?1424.
[51]  Mullen E D. 1983. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62: 53?62.
[52]  Neal C R, Mahoney J J and Chazey W J. 2002. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. Journal of Petrology, 43: 1177?1205.
[53]  Nohda S. 2009. Formation of the Japan Sea Basin: Reasse-ssment from Ar-Ar ages and Nd-Sr isotopic data of basement basalts of the Japan Sea and adjacent regions. Journal of Asian Earth Sciences, 34: 599?609.
[54]  Pearce J A. 1982. Trace element characteristics of lave from destructive plate boundaries // Thorpe R S. Andesites. Chichester: Wiley: 525?548.
[55]  Pearce J A and Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Re?view of Earth and Planetary Sciences, 23: 1073?1109.
[56]  Pearce J A and Stern R J. 2006. Origin of back-arc magmas: Trace element and isotope perspectives. Geophysical Monograph Series, 166: 63?68.
[57]  Rudnick R L and Gao S. 2003. The Composition of the Continental Crust // Rudnick R L. Tre?a?tise on the Geochemistry. Elsevier Pergamon, Oxford: 1?64.
[58]  Saunders A D, Storey M, Kent R W and Norry M J. 1992. Consequences of plume lithosphere interactions // Storey B C, Alabastetr T and Pankhurst R J. Magm?atism and the causes of continental breakup. Geological Society Special Publication, 68: 41?60.
[59]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes // Saunders A D and Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Pubication, 42: 528?548.
[60]  Weaver B L. 1991a. The origin of ocean island basalt end-member compositions: Trace element and isotopic const?raints. Earth Planetary Science Letters, 104: 381?397.
[61]  Weaver B L. 1991b. Trace element evidence for the origin of ocean-island basalt. Geology, 19: 123?126.
[62]  Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman: 1?466.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133