全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胶东控矿断裂断层泥形成与演化:以新立金矿床为例

Keywords: 新立金矿床,断层泥,XRD,粒度分布,胶东

Full-Text   Cite this paper   Add to My Lib

Abstract:

胶东半岛中生代金矿床具有重要的经济价值,其蚀变和矿化均受北东向断裂控制。例如,位于胶东半岛西北部的新立金矿床受区域三山岛-仓上断裂(F1)和次级断裂(F2)控制,其中F1广泛地控制蚀变和矿化,F2仅分割黄铁绢英岩化蚀变和钾化蚀变。本文选取新立金矿床F1和F2的断层泥为研究对象,通过显微观察,矿物组成测定,激光粒度分析等多种手段,探讨断层泥物质组成、矿物成因、演化阶段及其在成矿过程中的作用。矿物学分析表明F1断层泥主要成分为高岭石和石英,含少量黄铁矿、伊利石和石膏;F2断层泥含有大量的石英和绢云母以及少量高岭石和伊蒙混层。根据矿物共生关系和相图分析得出,高岭石是绢云母反应形成的,伊利石由高岭石转化所致,伊蒙混层是高岭石转化为伊利石的中间产物,这些矿物之间的转化反映了aK+或aK+/aH+连续减小。F1断层泥中黄铁矿和F2断层泥中石英和绢云母可能为围岩残留,石膏是次生风化的产物。F1断层泥的粒度分布曲线呈单峰型、复式双峰和三峰型,其粒度分布分维值为2.61~2.82;而F2断层泥仅呈简单双峰型,分维值为2.46~2.52,表明F1断层泥组份经历颗粒旋转磨蚀阶段,F2断层泥组份处于约束碾磨阶段。综上所述,水岩反应和构造磨蚀在断层泥的形成过程中扮演重要角色,两者在主断裂F1中更强烈、复杂。鉴于F2产出位置和断层泥特征,我们推断F2为成矿后构造。断层泥中大量的黏土矿物、高度分化的颗粒粒度以及定向的显微构造导致低的横向渗透性,使断层作为障碍层阻隔成矿流体并形成差异的蚀变矿化带。

References

[1]  Deng J, Wang Q F, Wan L, Liu H, Yang L Q and Zhang J. 2011. A multifractal analysis of mineralization charact?eristics of the Dayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China. Ore Geology Reviews, 40(1): 54?64.
[2]  Deng J, Wang Q F, Wan L, Yang L Q, Gong Q J, Zhao J and Liu H. 2009. Self-similar fractal analysis of gold mineralization of Dayingezhuang disseminated-veinlet deposit in Jiaodong gold province, China. Journal of Geochemical Exploration, 102(2): 95?102.
[3]  Deng J, Wang Q F, Yang L Q, Zhou L, Gong Q J, Yuan W M, Xu H, Guo C Y and Liu X W. 2008. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China. Acta Geologica Sinica, 82(4): 769?780.
[4]  Deng J, Yang L Q, Ge L S, Wang Q F, Zhang J, Gao B F, Zhou Y H and Jiang S Q. 2006. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area. Progress in Natural Science 16(8): 777?784.
[5]  Deng J, Yang L Q, Sun Z S, Wang J P, Wang Q F, Xin H B and Li X J. 2003a. A metallogenic model of gold deposits of Jiaodong granite-greenstone belt. Acta Geologica Sinica, 77(4): 537?546.
[6]  Dewhurst D N, Aplin A C and Sarda J P. 1999. Influence of clay fraction on pore-scale properties and hydraulic condu-ctivity of experimentally compacted mudstones. Journal of Geophysical Research, 104(B12): 29261?29274.
[7]  Faulkner D R, Jackson C A L, Lunn R J, Schlische R W, Shipton Z K, Wibberley C A L and Withjack M O. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11): 1557? 1575.
[8]  Faulkner D R and Rutter E H. 2001. Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology, 29(6): 503?506.
[9]  Storti F, Billi A and Salvini F. 2003. Grain size distributions in natural carbonate fault rocks: Insights for non-self- similar cataclasis. Earth and Planetary Science Letters, 206(1): 173?186.
[10]  Takahashi M. 2003. Permeability change during experim?ental fault smearing. Journal of Geophysical Research: Solid Earth, 108(B5): 2235?2249.
[11]  Takahashi M, Mizoguchi K, Kitamura K and Masuda K. 2007. Effects of clay content on the frictional strength and fluid transport property of faults. Journal of Geophysical Research: Solid Earth, 112(B8): 206?217.
[12]  Uysal I T, Mutlu H, Altunel E, Karabacak V and Golding S D. 2006. Clay mineralogical and isotopic (K?Ar, δ18O, δD) constraints on the evolution of the North Anatolian Fault Zone, Turkey. Earth and Planetary Science Letters, 243(1): 181?194.
[13]  Wang Q F, Deng J, Liu H, Yang L Q, Wan L and Zhang R Z. 2010a. Fractal models for ore reserve estimation. Ore Geology Reviews, 37(1): 2?14.
[14]  Wang Q F, Deng J, Zhao J, Liu H, Wan L and Yang L Q. 2010b. Tonnage-cutoff model and average grade-cutoff model for a single ore deposit. Ore Geology Reviews, 38(1): 113?120.
[15]  Wang L G, Qiu Y M, McNaughton N J, Groves D I, Luo Z K, Huang J Z, Miao L C and LiuY K. 1998. Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHR?IMP U?Pb zircon studies of granitoids. Ore Geology Reviews, 13(1): 275?291.
[16]  Warr L N and Cox S F. 2001. Clay mineral transformations and weakening mechanisms along the Alpine Fault, New Zealand. Geological Society, London Special Publications, 186(1): 85?101.
[17]  Yielding G, Freeman B and Needham D T. 1997. Quantitative fault seal prediction. AAPG bulletin, 81(6): 897?917.
[18]  Zhang S and Cox S F. 2000. Enhancement of fluid permeability during shear deformation of a synthetic mud. Journal of Structural Geology, 22(10): 1385?1393.
[19]  Zhang X O, Cawood P A, Wilde S A, Liu R Q, Song H L, Li W and Snee L W. 2003. Geology and timing of mineraliz-ation at the Cangshang gold deposit, north- western Jiaodong Peninsula, China. Mineralium Depo?sita, 38(2): 141?153.
[20]  Yang L Q, Deng J, Goldfarb R J, Zhang J, Gao B F and Wang Z L. 2013. 40Ar/39Ar geochronological constra?ints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research, 25(4): 1469?1483.
[21]  邓军, 王庆飞, 杨立强, 王建平, 高帮飞, 刘琰. 2004. 胶西北金矿集成矿作用发生的地质背景. 地学前缘, 11(4): 527?533.
[22]  吕古贤, 郭涛, 舒斌, 申玉科, 刘杜鹃, 周国发, 丁岳祥, 武际春, 赵可广, 孙之夫, 郑小礼, 哈本海. 2007. 胶东金矿集中区构造体系多层次控矿规律研究. 大地构造与成矿学, 31(2): 193?204.
[23]  王庆飞, 邓军, 万丽, 杨立强, 龚庆杰. 2007. 山东大尹格庄金矿蚀变岩中矿体分布稳定性的动力学控制参量探讨. 岩石学报, 23(4): 61?64.
[24]  杨立强, 熊章强, 邓军, 张中杰, 王建平, 李新俊. 2003. 构造应力场转换的成矿地球化学响应. 大地构造与成矿学, 27(3): 243?249.
[25]  Bentabol M, Ruiz Cruz M D, Huertas F J and Linares J. 2006. Chemical and structural variability of illitic phases formed from kaolinite in hydrothermal condit?ions. Applied Clay Science, 32(1-2): 111?124.
[26]  Berger G, Lacharpagne J C, Vedle B, Beaufort D and Lan?son B. 1997. Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences. Applied Geochemistry, 12(1): 23?35.
[27]  Billi A. 2005. Grain size distribution and thickness of bre?ccia and gouge zones from thin (<1 m) strike-slip fault cores in limestone. Journal of Structural Geology, 27(10): 1823?1837.
[28]  Billi A and Storti F. 2004. Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike-slip fault zone. Tectonophysics, 384(1): 115?128.
[29]  Blenkinsop T G. 1991. Cataclasis and processes of particle size Reduction. Pure and Applied Geophysics, 136(1): 59?86.
[30]  Casciello E, Cesarano M and Cosgrove J W. 2004. Shear deformation of politic rocks in large-scale natural fault. Geological Society, London, Special Publication, 224: 113?125.
[31]  Crawford B R, Faulkner D R and Rutter E H. 2008. Strength, porosity, and permeability development during hyd?ro-static and shear loading of synthetic quartz-clay fault gouge. Journal of Geophysical Research, 113(B3): 207?220.
[32]  Deng J, Liu W, Sun Z S, Wang J, Wang Q F, Zhang Q X and Wei Y G. 2003b. Evidence of mantle?rooted fluids and multi?level circulation ore?forming dynamics: A case study from the Xiadian gold deposit, Shandong Prov?ince, China. Science in China (Series D), 46: 123?133.
[33]  Deng J, Liu X F, Wang Q F and Pan R G. 2014. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Penin?sula, China: Constraints from fluid inclusion and C-D- O-S-Sr isotope compositions, Ore Geology Reviews, doi: 10.1016/j.oregeorev.2014.04.018.
[34]  Haines S H, Kaproth B, Marone C, Saffer D and Pluijm B V D. 2013. Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution. Journal of Structural Geology, 51: 206?225.
[35]  Holyoke C W and Tullis J. 2006. Formation and mainte?nance of shear zones. Geology, 34(2): 105?108.
[36]  Klima K, Riedmüller G and Stattegger K. 1988. Statistical analysis of clay mineral assemblages in fault gouges. Clays and Clay Minerals, 36(3): 277?283.
[37]  Knipe R J. 1992. Faulting processes and fault seal // Structure and Tectonic Modeling and Its Application to Petroleum Geology, Stavenger: Elsevier, Norwegian Petroleum Society Special Publication: 325?342.
[38]  Krauskopf K B and Bird D K. 1995. Introduction to geochemistry. New York: McGraw-Hill: 86?104.
[39]  Li X C, Fan H R, Santosh M, Hu F F, Yang K F and Lan T G. 2013. Hydrothermal alteration associated with Mesoz?oic granite-hosted gold mineralization at the Sansh?andao deposit, Jiaodong Gold Province, China. Ore Geology Reviews, 53: 403?421.
[40]  Mair K and Abe S. 2011. Breaking Up: Comminution Mechanisms in Sheared Simulated Fault Gouge. Pure and applied geophysics, 168(12): 2277?2288.
[41]  Mao J W, Wang Y T, Li H M, Pirajno F, Zhang C Q and Wang R T. 2008. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: evidence from D-O-C-S isotope systematics. Ore Geology Review, 33(3): 361?381.
[42]  Morton N, Girty G H and Rockwell T K. 2012. Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: A model for focused post-seismic fluid flow and heat transfer in the shallow crust. Earth and Planetary Science Letters, 329: 71?83.
[43]  Peters S G. 2004. Syn-deformational features of Carlin-type Au deposits. Journal of Structural Geology, 26(6): 1007?1023.
[44]  Qiu Y M, Groves D I, McNaughton N J, Wang L G and Zhou T H. 2002. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaod?ong Peninsula, eastern North China craton, China. Mineralium Deposita, 37(3-4): 283?305.
[45]  Sammis C G and Biegel R L. 1989. Fractals, Fault-Gouge, and Friction. Pure and Applied Geophysics, 131: 255?271.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133