全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

义敦岛弧带夏塞早白垩世A型花岗岩成因:锆石U-Pb年代学、地球化学及Hf同位素制约

Keywords: 铝质A型花岗岩,锆石U-Pb定年,岩石成因,造山后伸展,义敦岛弧带

Full-Text   Cite this paper   Add to My Lib

Abstract:

义敦岛弧带晚中生代侵入岩体目前仍缺乏高精度的年代学数据制约,其成因也存在争论。作者首次在岛弧带中段夏塞银铅锌多金属矿区发现与成矿关系密切的黑云母二长花岗岩。本文对其开展了年代学、地球化学和Hf同位素分析,探讨成因及构造背景。LA-ICP-MS锆石U-Pb定年结果为103±1Ma(MSWD=0.5),为早白垩世晚期岩浆活动产物。花岗岩属高钾钙碱性岩系,具有高硅、富碱和铁、贫钙和镁特征,SiO2含量为72.94%~74.98%,K2O+Na2O=7.56%~8.08%,铝饱和指数A/CNK=1.06~1.10,属弱过铝质岩石。岩石富集Zr、Hf等高场强元素和U、Th等大离子亲石元素,明显亏损Ba和Sr。REE具有明显的Eu负异常(δEu=0.13~0.25),总体呈较陡右倾的LREE富集和HREE相对亏损特征。岩相学和地球化学显示其为铝质A型花岗岩。Hf同位素组成εHf(t)=?2.7~0.6,二阶段模式年龄TDM2=925~1095Ma。地球化学及Hf同位素揭示夏塞岩体为软流圈地幔与壳源长英质岩浆混合成因,并经历了斜长石、正长石和褐帘石等矿物的分离结晶。夏塞花岗岩体具有后碰撞花岗岩特征,形成于早白垩世晚期弧-陆碰撞造山后伸展构造背景。

References

[1]  何显刚, 李淑慧, 谢恩顺. 2004. 四川巴塘砂西银铅锌矿床特征与找矿远景. 四川地质学报, 24(2): 77?81.
[2]  侯增谦, 曲晓明, 周继荣, 杨岳清, 黄典豪, 吕庆田, 唐绍华, 余金杰, 王海平, 赵金花. 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录. 地质学报, 75(4): 484?497.
[3]  侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109?120.
[4]  贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465?480.
[5]  廖远安, 郑裕民. 1986. 川西高原前震旦系恰斯群简介. 中国区域地质, 5(3): 271?275.
[6]  刘权. 2003. 四川夏塞银多金属矿床地质特征及成因. 矿床地质, 22(2): 121?128.
[7]  邱检生, 王德滋, 彭亚鸣, 周金城. 1996. 浙江舟山桃花岛碱性花岗岩的岩石学和地球化学特征及成因探讨. 南京大学学报, 32(1): 80?89.
[8]  邱检生, 蟹泽聪史, 王德滋. 2000. 浙江苍南瑶坑碱性花岗岩的地球化学及其成因类型. 岩石矿物学杂志, 19(2): 97?105.
[9]  曲晓明, 侯增谦, 周书贵, 唐绍华. 2002. 川西连龙含锡花岗岩的时代与形成构造环境. 地球学报, 23(4): 223?228.
[10]  王冬兵, 孙志明, 尹福光, 王立全, 王保弟, 张万平. 2012. 扬子地块西缘河口群的时代: 来自火山岩锆石LA-ICP-MS U-Pb年龄的证据. 地层学杂志, 36(3): 630?635.
[11]  王强, 赵振华, 熊小林. 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志, 19(4): 297?306.
[12]  王全伟, 王康明, 阚泽忠, 付小芳. 2008. 川西地区花岗岩及其成矿系列. 北京: 地质出版社: 1?305.
[13]  应汉龙, 王登红, 付小方. 2006. 四川巴塘夏塞花岗岩和银多金属矿床年龄及硫、铅同位素组成. 矿床地质, 25(2): 135?146.
[14]  周家云, 毛景文, 刘飞燕, 谭洪旗, 沈冰, 朱志敏, 陈家彪, 罗丽萍, 周雄, 王越. 2011. 扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征. 矿物岩石, 31(3): 66?73.
[15]  邹光富, 郑荣才, 胡世华, 陈才金, 蒋洪昌, 伍洪邦. 2008. 四川巴塘县夏塞银多金属矿床特征. 成都理工大学学报(自然科学版), 35(1): 93?102.
[16]  Collins W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin of A-type granites with partic?ular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189?200.
[17]  Eby G N. 1992. Chemical subdivision of the A-type granit?oids: Petrogenetic and tectonic implications. Geology, 20(7): 641?644.
[18]  Griffin W L, Belousova E A and Shee S. 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precam?brian Research, 131(3?4): 231?282.
[19]  Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y and Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC- ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133?147.
[20]  King P L, White A J R and Chappell B W. 1997. Charact-erization and origin of aluminous A type granites of the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38(3): 371?391.
[21]  Li X H, Chung S L, Zhou H W, Lo C H, Liu Y and Chen C H. 2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. Geological Society, London, Special Publications, 226(1): 193?215.
[22]  Litvinovsky B A, Jahn B M, Zanvilevich A N, Saunders A, Poulain S, Kuzmin D V, Reichow, M K and Titov A V. 2002. Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia): Implicat?ions for the origin of A-type granitoid magmas. Chem?ical Geology, 189(1?2): 105?133.
[23]  Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010. Continental and Oceanic Crust Recycling-indu?ced Melt-peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1?2): 537?571.
[24]  Loiselle M and Wones D. 1979. Characteristics and origin of anorogenic granites. Geological of Society of America, 1979, 11(7): 468.
[25]  Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1?2): 243?258.
[26]  Blichert-Toft J, Chauvel C and Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248?260.
[27]  Chappell B W and White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83: 1?26.
[28]  Foley S F, Barth M G and Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and an assess?ment of the influedce of rutile on the trace element characteristics of subduction zone magmas. Geochim?ica et Cosmochimica Acta, 64(5): 933?938.
[29]  F?rster H J, Tischendorf G and Trumbull R B. 1997. An evaluation of the Rb vs. (Y+Nb) discrimination diagr?am to infer tectonic setting of silicic igneous rocks. Lithos, 40(2?4): 261?293.
[30]  Harris N B W, Pearce J A and Tindle A G. 1986. Geochemical characteristics of collision-zone magma?tism. Geological Society, London, Special Publications, 19: 67?81.
[31]  Hong D W, Wang S G, Han B F and Jin M Y. 1996. Post- oro-genic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of Southeast Asian Earth Sciences, 13(1): 13?27.
[32]  Hoskin P W O and Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 8(4): 423?439.
[33]  Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L and Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27: 1391?1399.
[34]  Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of American Bulletin, 101: 635?643.
[35]  Pearce J A. 1996. Source and settings of granitic rocks. Episodes, 19(4): 120-125.
[36]  Qu X M, Hou Z Q and Zhou S G. 2002. Geochemical and Nd, Sr Isotopic Study of the Post-Orogenic Granites in the Yidun Arc Belt of Northern Sanjiang Region, Southw-estern China. Resource Geology, 52(2): 163?172.
[37]  Rollinson H R. 1993. Using geochemical data: evaluation, presentation, interpretation. Essex: Longman Scientific & Technical: 1?352.
[38]  Scherer E, Munker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293: 683?687.
[39]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313?345.
[40]  Vervoort J D and Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3?4): 533?556.
[41]  Watson E B, Wark D A and Thomas J B. 2006. Crystalli?zation Thermometers for Zircon and Rutile. Contrib?utions to Mineralogy and Petrology, 151(4): 413?433.
[42]  Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407?419.
[43]  Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C and Sun D Y. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrog?enesis. Lithos, 66(3?4): 241?273.
[44]  Yang J H, Wu F Y, Chung S L, Wilde S A and Chu M F. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1?2): 89?106.
[45]  Yuan H L, Wu F Y, Gao S, Liu X M, Xu P and Sun D Y. 2003. Determination of U-Pb age and rare earth elem?ent concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48: 2411?2421.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133