全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

个旧西凹铜-锡多金属矿床地球化学特征及地质意义

Keywords: 铜-锡多金属矿床,地球化学特征,成矿构造背景,云南个旧

Full-Text   Cite this paper   Add to My Lib

Abstract:

西凹铜-锡多金属矿床位于个旧东区老卡岩体内侧边缘的蚀变带中,矿化与钾长石化、萤石化和黄铁矿化等蚀变密切相关。成矿作用可分为矽卡岩阶段、锡石-石英阶段、石英-硫化物阶段和碳酸盐岩阶段。对该矿床未蚀变花岗岩、绿帘石-绿泥石化花岗岩及钾化花岗岩矿石的主量、微量及稀土元素,矿化期黄铁矿的硫、铅同位素特征进行了分析。研究发现,元素W、Bi、Sn、Cu、Zn、Ag具有共同成矿的特征。钾化花岗岩矿石及绿帘石-绿泥石化花岗岩的稀土元素特征与未蚀变花岗岩相似,表明成矿与花岗岩关系密切。硫同位素特征暗示玄武岩可能为Cu的成矿提供了物源;铅同位素表明成矿物质具有混合源的特征,表明花岗岩也为成矿提供了部分来源。Eu异常、较高的Y/Ho比值和Y、Ho发生分馏的特征表明早期成矿流体温度较高且富含氟,结合钾长石化、萤石化等围岩蚀变以及流体包裹体研究,认为该矿床成矿流体具有高温、富CO2、富氟富钾的特征,具典型的岩浆热液矿床特征,可能形成于后碰撞的伸展构造背景中。

References

[1]  华仁民, 李光来, 张文兰, 胡东泉, 陈培荣, 陈卫锋, 王旭东. 2010. 华南钨和锡大规模成矿作用的差异及其原因初探. 矿床地质, 29(1): 9?23.
[2]  黎应书, 秦德先, 党玉涛, 洪托, 燕永锋. 2007. 云南个旧东区印支期玄武岩的时空分布. 成都理工大学学报(自然科学版), 34(1): 23?28.
[3]  黎应书, 秦德先, 党玉涛, 薛传东, 谈树成, 陈爱兵, 贾国相. 2006a. 云南个旧锡矿床铅、硫同位素研究. 地质与勘探, 42(2): 49?53.
[4]  黎应书, 秦德先, 党玉涛, 薛传东, 谈树成, 洪托. 2006b. 云南个旧锡矿的玄武岩成矿. 吉林大学学报(地球科学版), 36(3): 326?335.
[5]  李家和. 1985. 个旧锡矿花岗岩特征及成因研究. 云南地质, 4(4): 327?352.
[6]  李晓峰, Yasushi W, 华仁民, 毛景文. 2008. 华南地区中生代Cu-(Mo)-W-Sn矿床成矿作用与洋岭/转换断层俯冲. 地质学报, 82(5): 625?640.
[7]  廖时理, 陈守余, 邓小虎, 李培. 2014. 个旧西凹铜-锡多金属矿床花岗岩蚀变带稀土元素特征及意义. 中南大学学报(自然科学版), 45(5): 1555?1565.
[8]  毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510?526.
[9]  毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45?55.
[10]  彭程电. 1985. 试论个旧锡矿成矿地质条件及矿床类型、模式. 云南地质, 4(1): 17?32.
[11]  秦德先, 黎应书, 范柱国, 陈爱兵, 谈树成, 洪托, 李连举, 林小平. 2006. 个旧锡矿地球化学及成矿作用演化. 中国工程科学, 8(1): 30?39.
[12]  秦建华, 丁俊, 刘才泽, 张启明. 2010. 我国西南地区斑岩矿床区域成矿环境. 大地构造与成矿学, 34(2): 216?223.
[13]  汪志芬. 1983. 关于个旧锡矿成矿作用的几个问题. 地质学报, 57(2): 154?163.
[14]  Chen J, Halls C and Stanley C J. 1992. Rare-earth element contents and patterns in major skarn minerals from Shizhuyuan W, Sn, Bi and Mo deposit, south-China. Geochemical Journal, 26: 147?158.
[15]  Chen Y J, Chen H Y, Zaw K, Pirajno F and Zhang Z J. 2007. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview. Ore Geology Reviews, 31: 139?169.
[16]  Taylor S R and McLennan S M. 1985. The continental crust: Its composition and evolution. London: Blackwell: 57?72.
[17]  陈守余, 赵鹏大, 童祥, 武俊德, 莫国培, 陈兴寿. 2011. 个旧东区蚀变花岗岩型锡铜多金属矿床成矿特征及找矿意义. 地球科学――中国地质大学学报, 36(2): 277?281.
[18]  陈衍景, 富士谷. 1992. 豫西金矿成矿规律. 北京: 地震出版社: 1?234.
[19]  陈衍景, 李诺. 2009. 大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异. 岩石学报, 25(10): 2477?2508.
[20]  地矿部南岭项目花岗岩专题组. 1989. 南岭花岗岩地质及其成因和成矿作用. 北京: 地质出版社: 1?471.
[21]  方维萱, 贾润幸. 2011. 云南个旧超大型锡铜矿区变碱性苦橄岩类特征与大陆动力学. 大地构造与成矿学, 35(1): 137?148.
[22]  方维萱, 张海, 贾润幸. 2011. 滇桂个旧-那坡三叠纪弧后裂谷盆地动力学与成矿序列. 大地构造与成矿学, 35(4): 552?566.
[23]  侯增谦. 2010. 大陆碰撞成矿论. 地质学报, 84(1): 30?58.
[24]  王永磊, 裴荣富, 李进文, 武俊德, 李莉, 王浩琳. 2007. 个旧老厂矿田花岗岩地球化学特征及其形成构造背景. 地质学报, 81(7): 979?985.
[25]  杨宗喜, 毛景文, 陈懋弘, 程彦博, 常勇. 2010. 云南个旧卡房铜矿床地质地球化学特征及其成因探讨. 岩石学报, 26(3): 830?844.
[26]  杨宗喜, 毛景文, 陈懋弘, 童祥, 武俊德, 程彦博, 赵海杰. 2008. 云南个旧卡房矽卡岩型铜(锡)矿Re-Os年龄及其地质意义. 岩石学报, 24(8): 1937?1944.
[27]  杨宗喜, 毛景文, 陈懋弘, 童祥, 武俊德, 程彦博, 赵海杰. 2009. 云南个旧老厂细脉带型锡矿白云母40Ar-39Ar年龄及其地质意义. 矿床地质, 28(3): 336?344.
[28]  於崇文, 唐元骏, 石平方, 邓宝林. 1988. 云南个旧锡-多金属成矿区内生成矿作用的动力学体系. 武汉: 中国地质大学出版社: 1?394.
[29]  张欢, 高振敏, 马德云, 陶琰, 伍孟银. 2005. 个旧超大型锡多金属矿床成矿物质来源的铅和硫同位素示踪. 地质与勘探, 41(2): 17?20.
[30]  张娟, 毛景文, 程彦博, 李肖龙. 2012. 云南个旧卡房矿田锡-铜矿床成矿作用过程探讨: 成矿流体约束. 岩石学报, 28(1): 166?182.
[31]  周建平, 徐克勤, 华仁民, 赵懿英, 朱金初. 1999. 个旧等锡矿中沉积组构的发现与矿床成因新探. 自然科学进展, 9(5): 37?40.
[32]  庄永秋, 王任重, 杨树培, 尹金明. 1996. 云南个旧锡铜多金属矿床. 北京: 地震出版社: 1?189.
[33]  Bau M and Dulski P. 1995. Comparative-study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology, 119: 213?223.
[34]  Bi X W, Cornell D H and Hu R Z. 2002. REE composition of primary and altered feldspar from the mineralized alteration zone of alkaline intrusive rocks, western Yunnan Province, China. Ore Geology Reviews, 19: 69?78.
[35]  Burnham C W and Ohmoto H. 1980. Late-state processes of felsic magmatism. Mining Geology, Special Issue: 1?11.
[36]  Candela P A and Holland H D. 1986. A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: The origin of porphyry-type ore deposits. Economic Geology, 81: 1?9.
[37]  Charvet J, Lapierre H and Yu Y W. 1994. Geodynamic signific-ance of the Mesozoic volcanism of southeastern China. Journal of Southeast Asian Earth Sciences, 9: 387?396.
[38]  Chen Y J and Wang Y. 2011. Fluid inclusion study of the Tangjiaping Mo deposit, Dabie Shan, Henan Province: Implications for the nature of the porphyry systems of post-collisional tectonic settings. International Geology Review, 53: 635?655.
[39]  Cheng Y B and Mao J W. 2010. Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: Constraints on their petrogenesis and tectonic setting. Lithos, 120: 258?276.
[40]  Cheng Y B, Mao J W, Rusk B and Yang Z X. 2012. Geology and genesis of Kafang Cu-Sn deposit, Gejiu district, SW China. Ore Geology Reviews, 48: 180?196.
[41]  Cline J S and Bodnar R J. 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research: Solid Earth, 96: 8113?8126.
[42]  Cooke D R, Hollings P and Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100: 801?818.
[43]  Ehya F. 2012. Variation of mineralizing fluids and fractionation of REE during the emplacement of the vein-type fluorite deposit at Bozijan, Markazi Province, Iran. Journal of Geochemical Exploration, 112: 93?106.
[44]  Groves D I, Condie K C, Goldfarb R J, Hronsky J and Vielreicher R M. 2005. 100th Anniversary special paper: Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Economic Geology, 100: 203?224.
[45]  Hoers J. 1997. Stable isotope geochemistry. Berlin, Heidel?berg: Springer-Verlag: 1?244.
[46]  Hou Z Q and Cook N J. 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geology Reviews, 36(1-3): 2?24.
[47]  Hou Z Q, Zhang H R, Pan X F and Yang Z M. 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39: 21?45.
[48]  Kerrich R, Goldfarb R, Groves D, Garwin S and Jia Y. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China Series D: Earth Sciences, 43: 1?68.
[49]  Li Z X and Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic pro?v-ince in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179?182.
[50]  Liao S L, Chen S Y, Deng X H, Li P, Zhao J N and Liao R Y Z. 2014. Fluid inclusion characteristics and geological significance of the Xi’ao copper-tin polymetallic deposit in Gejiu, Yunnan Province. Journal of Asian Earth Sciences, 79: 455?467
[51]  Phillips N and Zhou T H. 1999. Gold-only deposits and Archean granite. SEG Newsletters, 37: 1?8.
[52]  Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67: 184?197.
[53]  Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105: 3?41.
[54]  Simon A C, Pettke T, Candela P A, Piccolli P M and Heinrich C A. 2006. Copper partitioning in a melt- vapor-brine-magnetite-pyrrhotite assemblage. Geochi?mica et Cosmochimica Acta, 70: 5583?5600.
[55]  Sverjensky D A. 1984. Europium redox equilibria in aqueous-solution. Earth and Planetary Science Letters, 67: 70?78.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133