全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广西扶绥第四系萨伦托型铝土矿淋滤成矿过程

Keywords: 岩溶型铝土矿,成矿过程,二叠系,广西

Full-Text   Cite this paper   Add to My Lib

Abstract:

位于广西扶绥地区的铝土矿资源主要存在二叠系合山组原生岩溶型铝土矿层与第四系萨伦托型(岩溶堆积型)铝土矿床两种赋存形式,前者覆盖在中二叠统茅口组与上二叠统合山组的不整合面上,后者属于第四系松散堆积物,是原生铝土矿层被改造的产物。本文通过对广西扶绥铝土矿区内不同类型矿石样品的矿物学与地球化学分析,力图恢复从二叠系原生铝土矿的形成到最终成为萨伦托型铝土矿的矿石演化过程。不同采样点所代表的矿石可能经历的环境类型如下:ZK15108代表未受现代地下水改造的深埋状态;ZK4353代表受到现代地下水改造的浅埋状态;剖面MY代表暴露地表的原生矿层;剖面KL代表典型的萨伦托型矿床剖面。在该过程中,矿石内以高岭石与绿泥石为代表的黏土矿物有向一水软铝石及一水硬铝石等铝矿物转化的趋势。所有矿床均显示易迁移元素如碱金属与碱土金属等几乎全部流失,而Ti与Al呈现显著正相关关系,这些是红土化及铝土矿化过程中强烈的化学风化作用导致的结果。质量变化计算结果显示,在原始的铝土矿层剖面中,所有元素均呈现亏损,但Al因亏损程度较小因此呈现相对富集。当矿层接受现代地下水系统改造时,矿层内元素的迁移特征出现分异。而当进入到地表淋滤状态时,杂质元素被带走而Al出现富集。在广西原生铝土矿向萨伦托型铝土矿转变的过程中,淋滤作用的强度及地下水排泄通畅程度是控制矿石质量的最主要的两个因素。

References

[1]  刘长龄. 1987. 中国铝土矿的成因类型. 中国科学(B辑), 6(5): 535?544.
[2]  刘学飞, 王庆飞, 张起钻, 周芳, 高帮飞, 徐浩. 2008. 广西靖西县新圩铝土矿Ⅶ号矿体矿石热分析. 矿物岩石, 28(4): 53?58.
[3]  王庆飞, 邓军, 刘学飞, 张起钻, 李中明, 康微, 蔡书慧, 李宁. 2012. 铝土矿地质与成因研究进展. 地质与勘探, 48(3): 430?448.
[4]  张起钻. 1999. 桂西岩溶堆积型铝土矿床地质特征及成因. 有色金属矿产与勘查, 8(6): 486?489.
[5]  Ahn J H and Peacor D R. 1985. Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments. Clays and Clay Minerals, 33(3): 228?236.
[6]  de Caritat P and Walshe L. 1993. Chlorite geothermometry: A review. Clays and Clay Minerals, 41(2): 219?239.
[7]  Deng J, Wang Q, Yang S, Liu X, Zhang Q, Yang L and Yang Y. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences, 37(5-6): 412?424.
[8]  Enkin R J, Yang Z, Chen Y and Courtillot V. 1992. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present. Journal of Geophysical Research: Solid Earth, 97(B10): 13953?13989.
[9]  Exley C, Schneider C and Doucet F J. 2002. The reaction of aluminium with silicic acid in acidic solution: An important mechanism in controlling the biological availability of aluminium? Coordination Chemistry Reviews, 228(2): 127?135.
[10]  Hanil?i N. 2013. Geological and geochemical evolution of the Bolkarda?i bauxite deposits, Karaman, Turkey: Transformation from shale to bauxite. Journal of Geoc?h-emical Exploration, 133: 118?137.
[11]  Hatipoglu M, Helvaci C, Chamberlain S C and Babalik H. 2010. Mineralogical characteristics of unusual ''''Anato?lian'''' diaspore (zultanite) crystals from the Ilbirdagi diasporite deposit, Turkey. Journal of African Earth Sciences, 57(5): 525?541.
[12]  He B, Xu Y G, Chung S L, Xiao L and Wang Y. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213(3-4): 391?405.
[13]  He B, Xu Y G, Guan J P and Zhong Y T. 2010. Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism. Lithos, 119(1-2): 1?9.
[14]  Huang W L. 1993. Stability and kinetics of kaolinite to boehmite conversion under hydrothermal conditions. Chemical Geology, 105(1-3): 197?214.
[15]  Lehrmann D J, Enos P, Payne J L, Montgomery P, Wei J, Yu Y, Xiao J and Orchard M J. 2005. Permian and Triassic depositional history of the Yangtze platform and Great Bank of Guizhou in the Nanpanjiang basin of Guizhou and Guangxi, south China. Albertiana, 33(1): 149?168.
[16]  Liu X, Wang Q, Deng J, Zhang Q, Sun S and Meng J. 2010. Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China. Journal of Geochemical Exploration, 105(3): 137?152.
[17]  Liu X, Wang Q, Zhang Q, Feng Y and Cai S. 2012. Mineralogical characteristics of the superlarge Quater?nary bauxite deposits in Jingxi and Debao counties, western Guangxi, China. Journal of Asian Earth Scie?nces, 52(30): 53?62.
[18]  MacLean W H and Barrett T J. 1993. Lithogeochemical techniques using immobile elements. Journal of Geo?ch?e-mical Exploration, 48(2): 109?133.
[19]  Peryea F and Kittrick J. 1988. Relative solubility of corundum, gibbsite, boehmite, and diaspore at standard state conditions. Clays and Clay Minerals, 36(5): 391? 396.
[20]  Retallack G J. 2013. Permian and Triassic greenhouse crises. Gondwana Research, 24(1): 90?103.
[21]  Sheldon N D. 2005. Do red beds indicate paleoclimatic conditions? A Permian case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3-4): 305-319.
[22]  Sun Y, Lai X, Wignall P B, Widdowson M, Ali J R, Jiang H, Wang W, Yan C, Bond D P G and Védrine S. 2010. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos, 119(1-2): 20?33.
[23]  Chen Q and Zeng W. 1996. Calorimetric determination of the standard enthalpies of formation of gibbsite, Al(OH)3(cr), and boehmite, AlOOH(cr). Geochimica et Cosmochimica Acta, 60(1): 1?5.
[24]  Dai S, Zhang W, Ward C R, Seredin V V, Hower J C, Li X, Song W, Wang X, Kang H, Zheng L, Wang P and Zhou D. 2013. Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. International Jou?rnal of Coal Geology, 105: 60?84.
[25]  D''Argenio B and Mindszenty A. 1995. Bauxites and related paleokarst: Tectonic and climatic event markers at regional unconformities. Eclogae Geologicae Helvetiae, 88(3): 453?499.
[26]  MacLean W H, Bonavia F and Sanna G. 1997. Argillite debris converted to bauxite during karst weathering: Evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia. Mineralium Deposita, 32(6): 607?616.
[27]  Mameli P, Mongelli G, Oggiano G and Dinelli E. 2007. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): Insights on conditions of formation and parental affinity. International Journal of Earth Sciences, 96(5): 887?902.
[28]  Mordberg L E. 1999. Geochemical evolution of a Devonian diaspore-crandallite-svanbergite-bearing weath?er-ing profile in the Middle Timan, Russia. Journal of Geochemical Exploration, 66(1): 353?361.
[29]  Oliveira F S D, Varaj?o A F D C, Varaj?o C A C, Boulangé B and Soares C C V. 2013. Mineralogical, micromor-phological and geochemical evolution of the facies from the bauxite deposit of Barro Alto, Central Brazil. Catena, 105: 29?39.
[30]  Tardy Y and Nahon D. 1985. Geochemistry of laterites, stability of Al-goethite, Al-hematite, and Fe3+-Kaolinite in bauxite and ferricretes: An approach to the mechanism of concretion formation. American Journal of Science, 285: 865?903.
[31]  Valeton I. 1974. Resilicification at the top of the foreland bauxite in Surinam and Guyana. Mineralium Deposita, 9(2): 169?173.
[32]  Wang Q, Deng J, Liu X, Zhang Q, Sun S, Jiang C and Zhou F. 2010. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, west Guangxi, China. Journal of Asian Earth Sciences, 39(6): 701?712.
[33]  Wei X, Ji H, Li D, Zhang F and Wang S. 2013. Material source analysis and element geochemical research about two types of representative bauxite deposits and terra rossa in western Guangxi, southern China. Journal of Geochemical Exploration, 133: 68?87.
[34]  Young G M and Nesbitt H W. 1998. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal of Sedimentary Research, 68(3): 448?455.
[35]  Zarasvandi A, Zamanian H and Hejazi E. 2010. Immobile elements and mass changes geochemistry at Sar-Faryab bauxite deposit, Zagros Mountains, Iran. Journal of Geochemical Exploration, 107(1): 77?85.
[36]  Zeng R, Zhuang X, Koukouzas N and Xu W. 2005. Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field, Guangxi, South China. International Journal of Coal Geology, 61(1-2): 87?95.
[37]  蔡书慧, 刘学飞, 孟健寅, 孙思磊. 2012. 桂西田阳堆积型铝土矿矿物学及地球化学. 地质与勘探, 48(3): 460?470.
[38]  梅冥相, 马永生, 邓军, 初汉民, 郑宽兵. 2007. 滇黔桂盆地及邻区二叠系乐平统层序地层格架及其古地理背景. 中国科学(D辑), 37(5): 605?617.
[39]  梅冥相, 郑宽兵, 初汉民, 邓军, 李浩. 2004. 滇黔桂盆地及邻区二叠纪层序地层格架及古地理演化. 古地理学报, 6(4): 401?418.
[40]  钱小鄂. 2001. 广西岩溶地下水资源及允许开采量的探讨. 中国岩溶, 20(2): 29?34.
[41]  祝瑞勤, 奚小双, 吴堑虹, 杨震. 2011. 广西平果堆积型铝土矿成矿封闭环境研究. 大地构造与成矿学, 35(3): 386?393.
[42]  Bárdossy G. 1982. Karst bauxites. Bauxite deposits on carbonate rock. Amsterdam: Elsevier Scientific Publis?hing Company: 1?244.
[43]  Bárdossy G and Aleva G J J. 1990. Lateritic Bauxites // Developments in Economic Geology, 27. Amsterdam: Elsevier Scientific Publishing Company: 1?311.
[44]  Bogatyrev B, Zhukov V and Tsekhovsky Y G. 2009. Form?ation conditions and regularities of the distribution of large and superlarge bauxite deposits. Lithology and Mineral Resources, 44(2): 135?151.
[45]  Chen B, Joachimski M M, Shen S, Lambert L L, Lai X, Wang X, Chen J and Yuan D. 2013. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Research, 24(1): 77?89.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133