全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

东喜马拉雅构造结墨脱地区晚三叠世深熔作用的锆石U-Pb年代限定

, PP. 398-407

Keywords: 混合岩化片麻岩,深熔作用,锆石,微量元素,LA-ICP-MS

Full-Text   Cite this paper   Add to My Lib

Abstract:

东喜马拉雅构造结是研究青藏高原构造演化的关键地区。本文对东构造结墨脱地区的混合岩化片麻岩中的锆石进行了LA-ICP-MS微区微量元素分析及U-Pb定年。阴极发光(CL)图像揭示多数锆石具有明显的核-边结构特征,核部为原岩残留核,外形表现出晶棱圆化、港湾状等特征;而边部是混合岩化深熔作用变质过程中形成的新生变质锆石,并且具有典型岩浆锆石的环带特征。微量元素分析显示,锆石不同微域的微量元素含量不同,锆石核部含量明显高于边部(如:元素Th、U、Nb、Ta及Th/U比值),这一结果与深熔熔体和残留相之间的平衡关系有关。锆石U-Pb定年结果显示12个原岩锆石分析点给出的206Pb/238U年龄为516~1826Ma,其中有6个分析点的年龄值相对集中在911~1330Ma,表明该混合岩化片麻岩的原岩可能主要形成在这个年龄区间;14个变质锆石分析点给出了206Pb/238U年龄加权平均结果为216.7±3.2Ma(MSWD=3.9),这一年龄代表拉萨地体在晚三叠世发生深熔作用,与区域上拉萨地体东南缘发生变质事件的时间一致。

References

[1]  丁林, 钟大赉. 1999. 西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义. 中国科学(D辑), 29(5): 385-397.
[2]  董昕, 张泽明, 王金丽, 赵国春, 刘峰, 王伟, 于飞. 2009. 青藏高原拉萨地体南部林芝岩群的物质来源与形成年代: 岩石学与锆石U-Pb年代学. 岩石学报, 25(7): 1678-1694.
[3]  董昕, 张泽明. 2013. 拉萨地体南部早侏罗世岩浆岩的成因和构造意义. 岩石学报, 29(6): 1933-1948.
[4]  和钟铧, 杨德明, 郑常青, 王天武. 2006. 冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束. 地质论评, 52(1): 100-106.
[5]  简平, 程裕琪, 刘敦一. 2001. 变质锆石成因的岩相学研究――高级变质岩U-Pb年龄解释的基本依据. 地学前缘, 8(3): 183-191.
[6]  李才, 王天武, 李惠民, 曾庆高. 2003. 冈底斯地区发现印支期巨斑花岗闪长岩: 古冈底斯造山的存在证据. 地质通报, 22(5): 364-366.
[7]  李化启, 许志琴, 蔡志慧, 唐哲民, 杨梅. 2011. 滇西三江构造带西部腾冲地块内印支期岩浆热事件的发现及其地质意义. 岩石学报, 27(7): 2165-2172.
[8]  刘琦胜, 江万, 简平, 叶培盛, 吴珍汉, 胡道功. 2006. 宁中白云母二长花岗岩SHRIMP锆石U-Pb年龄及岩石地球化学特征. 岩石学报, 22(3): 643-652.
[9]  潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
[10]  吴元保, 陈道公, 郑永飞, 夏群科, 涂祥林. 2004. 北大别漫水河混合岩化片麻岩中锆石微量元素特征及其地质意义. 岩石学报, 20(5): 1141-1150.
[11]  许志琴, 蔡志慧, 张泽明, 李化启, 陈方远, 唐哲民. 2008. 喜马拉雅东构造结-南迦巴瓦构造及组构运动学. 岩石学报, 24(7): 1463-1476.
[12]  张进江, 季建清, 钟大赉, 丁林, 何顺东. 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨. 中国科学(D辑), 33(4): 373-383.
[13]  张泽明, 郑来林, 王金丽, 赵旭东, 石磊. 2007. 东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩――印度大陆向欧亚板块之下俯冲至80~100 km深度的证据. 地质通报, 26(1): 3-12.
[14]  郑来林, 廖光宇, 耿全如, 董翰, 孙志明, 楼雄英, 李生. 2004a. 墨脱县幅地质调查新成果及主要进展. 地质通报, 23(5-6): 458-462.
[15]  郑来林, 金振民, 潘桂堂, 耿全如, 孙志明. 2004b. 东喜马拉雅南迦巴瓦地区区域地质特征及构造演化. 地质学报, 78(6): 744-751.
[16]  钟大赉, 丁林. 1995. 西藏南迦巴瓦峰地区发现高压麻粒岩. 科学通报, 40(14): 1343.
[17]  Barbey P, Brouand M, Fort P L and Pecher A. 1996. Granit- migmatite genetic link: The example of the Manaslu granite and Tibetan Slab migmatites in central Nepal. Lithos, 38(1-2): 63-79.
[18]  Brown M. 2001. Crustal melting and granite magmatism: Key issues. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(4-5): 201-212.
[19]  Dewey J F, Shackelton R M, Chang C and Sun Y. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London, 327 (Series A): 379-413.
[20]  Ding L, Zhong D L, Liu Y, Kapp P and Harrison M. 2001. Cenozic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192: 423-438.
[21]  Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571.
[22]  Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43.
[23]  Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochromology Center, California.
[24]  Pearce J A and Deng W. 1988. The ophiolites of the Tibetan geotraverse Lhasa-Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London, 327 (Series A): 215-238.
[25]  Rubatto D. 2002. Zircon trace element geochemistry: Partit?io?ning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138.
[26]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes // Saunders A D and Norry M J. Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42: 313-345
[27]  Xu Z Q, Ji S C, Cai Z H, Zeng L S, Geng Q R and Cao H. 2012. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deforma?tion, fabrics and geochronology. Gondwana Research, 21(1): 19-36.
[28]  Yang J S, Xu Z Q, Li Z L, Xu X Z, Li T F, Ren Y F, Li H Q, Chen S Y and Robinson P T. 2009. Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo-Tethys? Journal of Asian Earth Sciences, 34(1): 76?89.
[29]  Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Earth Planetary Science Letters, 28: 211-280
[30]  Zeh A, Gerdes A, Barton J and Klemd R. 2010. U-Th-Pb and Lu-Hf systematic of zircon from TTG’s, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): Constraints for the formation, recycling and metamorphism of Palaeoarchaean crust. Precambr?ian Research, 179(1-4): 50-68.
[31]  常承法, 郑锡澜. 1973. 中国西藏南部珠穆朗玛峰地区构造特征. 地质科学, 8(1): 1-12.
[32]  孙志明, 耿全如, 楼雄英, 郑来林, 李生, 廖光宇. 2004a. 东喜马拉雅构造结南迦巴瓦岩群的解体. 沉积与特提斯地质, 24(2): 8-15.
[33]  孙志明, 郑来林, 耿全如, 李生, 廖光宇, 石文礼, 张东. 2004b. 东喜马拉雅构造结高压麻粒岩特征、形成机制及折返过程. 沉积与特提斯地质, 24(3): 22-29.
[34]  杨经绥, 许志琴, 耿全如, 李兆丽, 徐向珍, 李天福, 任玉峰, 李化启, 蔡志慧, 梁凤华, 陈松永. 2006. 中国境内可能存在一条新的高压/超高压(?)变质带――青藏高原拉萨地体中发现榴辉岩带. 地质学报, 80(12): 1787-1792.
[35]  杨经绥, 许志琴, 李天福, 李化启, 李兆丽, 任玉峰, 徐向珍, 陈松永. 2007. 青藏高原拉萨地块中的大洋俯冲型榴辉岩: 古特提斯洋盆的残留?地质通报, 26(10): 1277-1287.
[36]  张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007. 冈底斯印支期造山事件: 花岗岩类锆石U-Pb年代学和岩石成因证据. 地球科学――中国地质大学学报, 32(2): 155?166.
[37]  Chavagnac V, N?gler T F and Kramers J D. 1999. Migmati?zation by metamorphic segregation at subsolidus condi?ti?ons: Implications for Nd-Pb isotope exchange. Lithos, 46(2): 275-298.
[38]  Chu M F, Chung S L, Song B, Liu D Y, O’Reilly S Y, Pearson N J, Ji J Q and Wen D J. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745-748.
[39]  Foster D A, Schafer C, Fanning C M and Hyndman D W. 2001. Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho-Bitterroot batholiths. Tectonophysics, 342(3-4): 313-350.
[40]  Geng Q R, Pan G T, Zhen, L L, Chen Z L, Fisher R D, Sun Z M, Ou C S, Dong H, Wang X W, Li S, Lou X Y and Fu H. 2006. The eastern Himalayan syntaxis: Major tectonic domains, ophiolitic mélanges and geolo?gic evolution. Journal of Asian Earth Sciences, 27: 265-285.
[41]  Gordon S M, Whitney D L, Teyssier C, Grove M and Dunlap W J. 2008. Timescales of migmatization, melt crystalli?zation, and cooling in a Cordilleran gneiss dome: Valhalla complex, southeastern British Columbia. Tect?o?nics, 27(4): TC4010, doi: 10.1029/2007TC002103.
[42]  Hanchar J M and Miller C F. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implication for interpretation of com?p?l?ex crustal histories. Chemical Geology, 100(1-3): 1-13.
[43]  Keay S, Lister G and Buick I. 2001. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphism core complex, Cyclades, Aeg?ean Sea, Greece. Tectonophysics, 342(3-4): 275-312.
[44]  Li H Q, Xu Z Q, Yang J S, Cai Z H, Chen S Y and Tang Z M. 2009. Records of Indosinian Orogenesis in Lhasa Terrane, Tibet. Journal of Earth Science, 34(2): 348-36.
[45]  Liati A and Gebauer D. 1999. Constraining the prograde and retrograde P-T-t path of Eocene HP rocks by SHRIMP dating of different zircon domains: Inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contributions to Minera?logy and Petrology, 135(4): 340-354.
[46]  Liati A, Gebauer D and Wysoczanski R. 2002. U-Pb SHRIMP-dating of zircon domains from UHP garnet- rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece): Evidence for early Cretaceous crystallization and Late Cretaceous metamorphism. Chemical Geology, 184(3-4): 281-299.
[47]  Lin Y H, Zhang Z M, Dong X, Xiang H and Yan R. 2013. Early Mesozoic metamorphism and tectonic signific?ance of the eastern segment of the Lhasa terrane, south Tibet. Journal of Asian Earth Sciences, 78: 160-183.
[48]  Liu Y and Zhong D L. 1997. Petrology of high-pressuere granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451-466.
[49]  Mengel K, Richter M and Johannes W. 2001. Leucosome- forming small-scale geochemical processes in the metapelitic migmatites of the Turku area, Finland. Lithos, 56(1): 47-73.
[50]  Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477(3-4): 119-134.
[51]  Villaseca C, Romera C M and Barbero L. 2001. Melts and residua geochemistry in a low-to-mid crustal section (Central Spain). Physics and Chemistry of Earth, Part A: Solid Earth and Geodesy, 26(4-5): 273-280.
[52]  Watt G R, Burns I M and Graham G A. 1996. Chemical characteristics of migmatites: Accessory phase distribu?tion and evidence for fast melt segregation rates. Contri?bu?tions to Mineralogy and Petrology, 125(1): 100-111.
[53]  Whitehouse M. 2000. Combing in situ zircon REE and U-Th-Pb geochronology: A petrogenetic dating tool. Journal of Conference Abstracts, 5(2): 1086.
[54]  Wu Y B, Zheng Y F, Zhang S B, Zhao Z F, Wu F Y and Liu X M. 2007. Zircon U-Pb ages and Hf isotope composit?ions of migmatite from the North Dabie terrane in China: Constraints on partial melting. Journal of Metamorphic Geology, 25(9): 991-1009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133